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How to evaluate integrals?
In the previous lessons we have seen, how to 
choose priors and how to obtain the posterior 
distributions
We, generally wish to evaluate some point 
estimates or predictive distributions based on the 
computed posterior
This involves integration over some variables



If the model is simple and nonhierarchical and 
involves conjugate distributions this may be simple.
However, many cases are more complicated and it is 
difficult to evaluate the integrals analytically



Three cases of integrals
the normalisation integral



Marginalisation integral
Suppose  (multidimensional 
parameter)
We have calculated and we want to 
calculate the posterior for one parameter only

Where

This is a k-1 dimensional integration



Expectation integral
That is, when we are trying to evaluate a point estimate

In many cases, it is very difficult or impossible to evaluate 
the integral analytically
This was one of the main problems with the Bayesian 
approach



Example: shape parameter of the 
Gamma distribution

Assume that α is known and we observe 
Take the prior as uniform distribution
The posterior is proportional to:

Difficult to have closed form itegrals over this integrand
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Solution?
Numerical integration techniques
Suppose we wish to integrate 

Various techniques exist.
Simplest one: finite difference approximation



Finite difference approximation
1. Find a value of            beyond which            is negligible
2. Split                 into N equivalent intervals. Then

Where

maxθ ( )θg
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Numerically inefficient since we need very large N for good 
approximation 
When we have multiparameters, you need to form grids
Where the distributions are peaked you should use finer, that 
is nonregular grids!
it gets too complicated to apply this method
Alternative: Monte Carlo methods



What is sampling good for?
MC techniques used for integration and optimization 
problems

Bayesian Inference and Learning
• Normalization
• Marginalization
• Expectation

Statistical Mechanics
Optimization
Model Selection



The Monte Carlo Principle
Draw an i.i.d set of samples             from 
Approximate target density

(i) N
i 1{x } =

• Approximate integrals

p(x)



Monte Carlo methods
We do not need to numerically calculate the 
posterior density function but try to generate values 
with its distribution.
Then we use these values to approximate the 
density functions or estimates such as posterior 
means, variances, etc.
Various ways:

Rejection sampling
Importance sampling



Monte Carlo principle
Given a very large set X and a distribution p(x) over it
We draw i.i.d. a set of N samples 
We can then approximate the distribution using these samples
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Monte Carlo principle
We can also use these samples to compute expectations

And even use them to find a maximum

∑
=

=
N

i

i
N xf

N
fE

1

)( )(1)(

)][p(maxargˆ )(

)(

i

x
xx

i
=

∑=→
∞→ xN

xxffE )p()()(



Rejection sampling
More generally, we would like to sample from p(x), but it’s 
easier to sample from a proposal distribution q(x)
q(x) satisfies p(x) < M q(x) for some M<∞
Procedure:

Sample x(i) from q(x)
Accept with probability p(x(i)) / Mq(x(i))
Reject otherwise

The accepted x(i) are sampled from p(x)!
Problem: if M is too large, we will rarely accept samples

In the Bayes network, if the evidence Z is very unlikely then we will 
reject almost all samples



Rejection Sampling



Example
Shape parameter of a Gamma distribution

Choosing uniform prior, the prior is bounded and on 
a finite interval
We need to find a constant such that
In this case c is ( ) 18

max 1038.2/max ×== βθgc



This is 500,000 proposals of which 557 (%0.11) are 
accepted.



Example: Bayes net inference
Suppose we have a Bayesian 
network with variables X
Our state space is the set of all 
possible assignments of values to 
variables
Computing the joint distribution is 
in the worst case NP-hard
However, note that you can draw a 
sample in time that is linear in the 
size of the network
Draw N samples, use them to 
approximate the joint
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Rejection sampling
Suppose we have a Bayesian 
network with variables X
We wish to condition on some 
evidence ZєX and compute the 
posterior over Y=X-Z
Draw samples, rejecting them when 
they contradict the evidence in Z
Very inefficient if the evidence is 
itself improbable,  because we must 
reject a large number of samples
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Importance sampling
The problem with the rejection sampling is that we 
have to be clever in choosing the proposal density!
Importance sampling avoids difficult choices and 
generates random numbers economically.



Importance Sampling
In importance sampling we generate N samples (i) N

i 1{x } = from q(x)

To account for the fact we sampled from the wrong distribution we introduce weights

Then

Monte Carlo estimate of I(f)

Choose proposal distribution to minimize variance of the estimator

Optimal proposal distribution



Importance sampling
Also called biased sampling
It is a variance reduction sampling technique
Introduced by Metropolis in 1953
Instead of choosing points from a uniform distribution, they are now 
chosen from a distribution which concentrates the points where the 
function being integrated is large. 

Sample from g(x) and evaluate f(x)/g(x)
The new integrand, f/g, is close to unity and so the variance for this 
function is much smaller than that obtained when evaluating the function 
by sampling from a uniform distribution. Sampling from a non-uniform 
distribution for this function should therefore be more efficient than doing 
a crude Monte Carlo calculation without importance sampling
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Markov Chain sampling
Recall again the set X and the distribution p(x) we wish to 
sample from
Suppose that it is hard to sample p(x) and difficult to suggest 
a proposal distribution but that it is possible to “walk around”
in X using only local state transitions
Insight: we can use a “random walk” to help us draw random 
samples from p(x)

X

p(x)



That is, if our sampling follows a well defined 
structure, i.e. if our sample at one instant depends on 
our sampling the step before there are things we gain
This is Markov Chain Monte Carlo Sampling and 
we will see how we benefit from a “random walk”
MCMC theory basically says that if you sample 
using a Markov Chain, eventually your samples will 
be coming from the stationary distribution of the 
Markov Chain.



The key to Markov Chain sampling’s success is the 
fact that at every iteration you sample from a better 
distribution which eventually converges to your 
target distribution while in importance sampling, 
you always sample from the same (and wrong) 
distribution.
We start by reviewing the Markov process theory.



MARKOV CHAINS



Markov chain is a process





Markov Chain



A.A. Markov 1856-1922 

Russian 
mathematician



Memory



Other properties



Chain rule of probability



Modelling by chain rule





Transition matrix







Example



State transition graph



Markov Chains of k-th order





Joint probability distribution of a 
Markov Chain







Parametric statistical model



N-step transition probabilities





Chapman-Kolmogorov equations



In matrix form:

Proof: straigthforward but lengthy. Look at 
Thomas Cover: Elements of Information Theory



Power





State probabilities









Proof





Existence of a stationary distribution







Stationary distribution









Convergence to a unique invariant 
distribution



Markov Chains for sampling
To sample from p(x), we require

The stationary distribution of the Markov chain must be p(x)

If this is the case, we can start in an arbitrary state, use the
Markov chain to do a random walk for a while, and stop and 
output the current state x(t)

The resulting state will be sampled from p(x)
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Markov Chain Monte Carlo
Strategy for generating samples      , while exploring the 
state space X using a Markov chain mechanism 

(i)x



Stationary distribution
Consider the Markov chain given above:

The stationary distribution is 

Some samples:

T=
0.7 0.3 0
0.3 0.4 0.3

0 0.3 0.7

x2

x1 x3

0.4

0.3

0.3

0.3

0.7 0.70.3

0.33 0.33 0.33 x =0.7 0.3 0
0.3 0.4 0.3

0 0.3 0.7

0.33 0.33 0.33

1,1,2,3,2,1,2,3,3,2
1,2,2,1,1,2,3,3,3,3
1,1,1,2,3,2,2,1,1,1
1,2,3,3,3,2,1,2,2,3
1,1,2,2,2,3,3,2,1,1
1,2,2,2,3,3,3,2,2,2

Empirical Distribution:

0.33 0.33 0.33



Reversibility





Detailed Balance
Claim: To ensure that the stationary distribution of the Markov chain is 
p(x) it is sufficient for p and T to satisfy the detailed balance
(reversibility) condition:
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Ergodicity
Claim: To ensure that the chain converges to a unique 
stationary distribution the following conditions are sufficient:

Irreducibility: every state is eventually reachable from any start state; 
for all x,yєX there exists a t such that

Aperiodicity: the chain doesn’t get caught in cycles; for all x,yєX it is 
the case that

The process is ergodic if it is both irreducible and aperiodic
This claim is easy to prove, but involves eigenstuff!
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How to pick a suitable Markov 
chain for our distribution?

Suppose our distribution p(x) is easy to sample, and easy 
to compute up to a normalization constant, but hard to 
compute exactly

e.g. a Bayesian posterior P(M|D) α P(D|M)P(M)

We define a Markov chain with the following process:
Sample a candidate point x* from a proposal distribution q(x*|x(t)) 
which is symmetric: q(x|y)=q(y|x)
Compute the importance ratio (this is easy since the normalization 
constants cancel)

With probability min(r,1) transition to x*, otherwise stay in the same 
state

)p(
*)p(
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Metropolis intuition
Why does the Metropolis algorithm work?

Proposal distribution can propose anything it 
likes (as long as it can jump back with the 
same probability)
Proposal is always accepted if it’s jumping to 
a more likely state 
Proposal accepted with the importance ratio if 
it’s jumping to a less likely state

The acceptance policy, combined with the 
reversibility of the proposal distribution, 
makes sure that the algorithm explores states 
in proportion to p(x)!

xt

r=1.0

x*

r=p(x*)/p(xt)

x*



Metropolis convergence
Claim: The Metropolis algorithm converges to the 
target distribution p(x).
Proof: It satisfies detailed balance

For all x,yєX, wlog assuming p(x)<p(y) 

),()p(
)p(
)p()|()p(

)|()p(
)|()p(),()p(

xyTy
y
xyxqy

yxqx
xyqxyxTx

=

=

=
= candidate is always 

accepted b/c p(x)<p(y)

q is symmetric

transition prob b/c p(x)<p(y)



Metropolis-Hastings
The symmetry requirement of the Metropolis proposal 
distribution can be hard to satisfy
Metropolis-Hastings is the natural generalization of the 
Metropolis algorithm, and the most popular MCMC 
algorithm
We define a Markov chain with the following process:

Sample a candidate point x* from a proposal distribution q(x*|x(t)) which is 
not necessarily symmetric
Compute the importance ratio:

With probability min(r,1) transition to x*, otherwise stay in the same state x(t)
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Metropolis Hastings



MH convergence
Claim: The Metropolis-Hastings algorithm converges 
to the target distribution p(x).
Proof: It satisfies detailed balance

For all x,yєX, wlog assume p(x)q(y|x)=p(y)q(x|y) 

),()p(
)|()p(
)|()p()|()p(

)|()p(
)|()p()|()p(

)|()p(),()p(

xyTy
yxqy
xyqxyxqy

yxqy
yxqyxyqx

xyqxyxTx

=

=

=

= candidate is always accepted 
b/c p(x)q(y|x)=p(y)q(x|y)

transition prob 
b/c p(x)q(y|x)=p(y)q(x|y)



advantages
The symmetry requirement is avoided.
Allowing asymmetric jumping rules can be useful in 
increasing the speed of the random walk



A good jumping distribution has the following 
properties:

For any θ, it is easy to sample from J(θ*| θ)
It is easy to compute the ratio of importance ratios r
Each jump goes a reasonable distance in the parameter 
space (otherwise the random walk moves too slowly)
The jumps are not rejected too frequently (otherwise the 
random walk wastes too much time standing still)



Metropolis Hastings
i *

* (i) *

(i) * (i)

If  A(x , x ) 1,  then the new state is accepted
p(x )q(x | x )Otherwise, the new state is accepted with probability 
p(x )q(x | x )

=

using a good proposal distribution is important



The Transition Kernel

(i) * (i) (i) *
X

r(x ) q(x | x )(1 A(x , x ))= −∑

The transition kernel for MH algorithm

Rejection term -



Special cases of MH algorithm
Independent sampler

Metropolis algorithm

Gibbs algorithm



Gibbs sampling
A special case of Metropolis-Hastings which is applicable to 
state spaces in which we have a factored state space, and 
access to the full conditionals:

Perfect for Bayesian networks!
Idea: To transition from one state (variable assignment) to 
another, 

Pick a variable,
Sample its value from the conditional distribution
That’s it!

We’ll show in a minute why this is an instance of MH and 
thus must be sampling from the full joint

),...,,,...,|p( 111 njjj xxxxx +−



Gibbs Sampling
Gibbs sampling is the simplest and most easily implemented 
sampling method for MCMC. However, the problem has to 
have a particular form in order for it to work.
The idea is as follows. Consider a problem with two 
parameters, θ1 and θ2. Suppose we have available the 
conditional distributions

where D is the data (not needed). Then, starting at some 
initial point                    in parameter space, generate a 
random walk, a sequence                   as follows: 

p(θ1 | θ2 ,D)   and    p(θ2 | θ1, D)

(θ1
(0) ,θ2

(0) )
(θ1

(k ) ,θ2
(k ) )



Gibbs Sampling
For k=1,…,n define

where ‘~’ means here that we draw the value in question 
from the indicated distribution.
The resulting sequence of values is a Markov chain; the 
values at the (k+1)st step depend only on the values at the kth 
step and are independent of previous values
The Markov chain will in general tend to a stationary 
distribution, and the stationary distribution will be the desired 
p(θ1, θ2| D)

θ1
(k ) ~ p(θ1 |θ2

(k −1), D),

θ2
(k ) ~ p(θ2 |θ1

(k ) ,D)



Gibbs Sampling
The method generalizes to a large number of 
variables, e.g.,

 

θ1
(k ) ~ p(θ1 |θ2

(k −1),θ3
(k −1),K,θm

(k −1), D),

θ2
(k ) ~ p(θ2 |θ1

(k ) ,θ3
(k −1),K,θm

(k −1), D)
M

θm
(k ) ~ p(θ2 |θ1

(k ) ,θ2
(k ) ,K,θm −1

(k ) , D)



Gibbs sampling
More formally, the proposal distribution is

The importance ratio is

So we always accept!

=)|( )(* txxq )|( )(* t
jj xxp − if x*-j=x(t)

-j

0 otherwise

p( )q( | )
p( )q( | )
p( ) p( | )
p( ) p( | )

p( ) p( , ) p( )
p( ) p( , ) p( )

p( )
1

p( )

j j

j j

j j j

j j j

j

j

y x yr
x y x
y x x
x y y

y x x y
x y y x

y
x

−

−

− −

− −

−

−

=

=

=

= =

Definition of 
proposal distribution

Definitionn of 
conditional 
probability

B/c we didn’t change 
other vars



Gibbs sampling example
Consider a simple, 2 variable Bayes net

Initialize randomly
Sample variables alternately

A

B
0.80.2-a

0.20.8a

-bb

0.50.5

-aa
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Practical issues
How many iterations?
How to know when to stop?
What’s a good proposal function?



Gibbs Sampling
One particular choice of cycle kernel

Make each variable a block
Proposal distribution: p(xi|xj\i)
For a Bayes Net, this is p(xi|markov blanket(xi))

This choice of q yields an acceptance probability of 
1 (“deterministic scan”)
Sampling from q may require additional MH steps



Gibbs Sampling
Suppose we have normally distributed estimates Xi, i=1,…,N, 
of a parameter x, with unknown variance σ2. The likelihood 
is

p(X|x,σ) ∝ σ–Nexp(–Σ(Xi–x)2/2σ2)

Assume a flat (uniform) prior for x and a “Jeffreys” prior 1/σ2

for σ2. The posterior is proportional to prior times likelihood:
p(x,σ|X) ∝ σ–(N+2)exp(–Σ(Xi–x)2/2σ2)

(The Jeffreys prior is dσ/σ ∝ dσ2/σ2; it is commonly used as 
a prior for scale variables. For technical reasons having to do 
with the distributions available in R it’s best to think about 
sampling σ2 instead of σ so we use dσ2/σ2)



Gibbs Sampling
The posterior distribution can be simplified using the 
trick of "completing the square"

p(x,σ 2 | X) ∝ σ −( N+2 ) exp −
Xi − x + x − x( )2∑
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p(x | σ 2 , X) = p(x,σ 2 | X) / p(σ 2 | X)
Depends only
on σ2



Gibbs Sampling
When sampling x, σ will be fixed, so we can ignore 
factors dependent only on σ. Let      be the sample 
mean as we defined it before. Then the conditional 
distribution of x can be rewritten, apart from 
constant factors

This is readily seen to be normal with mean     and 
variance σ2/N. So that’s the distribution we need to 
use for sampling x in each Gibbs step.

x 

p(x | σ 2 , X) ∝ exp −
N x − x( )2

2σ 2
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

x 



Gibbs Sampling
The conditional distribution for χ2=Σ(Xi–x)2/σ2 is even easier, 
going back to the original posterior (3 pages back):

This is a standard chi-square distribution on N degrees of 
freedom, and R has a function for drawing samples from that 
distribution. We can then get a value of σ2 by dividing Σ(Xi–
x)2 by the value of χ2 that we sampled. That allows us to 
sample σ2 at each Gibbs step

p(χ 2 | x, X) ∝ χ2( )N / 2 +1 exp −χ 2 / 2( )dσ 2

dχ 2

∝ χ 2( )N / 2−1
exp −χ 2 / 2( )

σ 2 = 1
χ2 so dσ 2

dχ 2 = 1
χ 2( )2











Example: Fitting straight line





Advanced Topics
Simulated annealing, for global optimization, is a 
form of MCMC
Mixtures of MCMC transition functions
Monte Carlo EM (stochastic E-step)
Reversible jump MCMC for model selection
Adaptive proposal distributions



Simulated Annealing



MCMC Mixtures and Cycles 
If K1 and K2 are transition kernels for p(x), then 
the following are valid kernels:

(cycle hybrid kernel)
.                                          (mixture hybrid kernel)

What’s the Point?
K1 and K2 can have different behavior 

• Global vs. local (mixture)
• One set of variables vs. others (cycles)

1 2(1 ) ,0 1K Kν ν ν+ − ≤ ≤
1 2K K



Using a Mixture of Kernels
Use u to decide between K1 and K2

Global K locks into peaks
Local K does random walk in that area

from Andrieu et al. An Introduction to MCMC for Machine Learning.  Machine Learning, 2002.  



Cycles of Kernels
Split multivariate state into blocks for separate 
updating
Update block
bi given all other
blocks bj and 
previous value
of bi

from Andrieu et al. An Introduction to MCMC for Machine Learning.  Machine Learning, 2002.  



Monte Carlo EM (MCEM)
The EM algorithm

E: Compute expected log lhood over p(h|v,t)
• .

M: Maximize log lhood wrt parameters theta

The integral over all variables can be hard
Approximate via sampling (E-step)
Do M Step as usual



MCEM: Procedure

from Andrieu et al. An Introduction to MCMC for Machine Learning.  Machine Learning, 2002.  



Auxiliary Variable Sampling
Sometimes easier to sample p(x,u) than p(x)

Obtain samples of p(x) by ignoring u

Hybrid Monte Carlo
Use gradient of target distribution
p(x,u) = p(x)N(u; O,Inx)
Take L “frog leaps” in u and x 

Lth value is the proposal candidate for MH with p(x,u)

log ( ) /x p x xΔ ∂ ∂



Auxiliary Variable Sampling (II)
The Slice Sampler

General version of Gibbs Sampler
where

Conditionals: 

from Andrieu et al. An Introduction to MCMC for Machine Learning.  Machine Learning, 2002.  



Convergence



Visual inspection



autocorrelations





example





















Convergence of MCMC
Determing length of chain is hard

Initial set of samples discarded (burn-in)
Tests exist for stabilization, but unsatisfactory

Trying to bound the mixing time
minimum # of steps for distribution of K to be close to 
p(x)



Convergence of MCMC (cont’d)
Bound on total variation norm: 
Second eigenvalue can also be bounded
Implications: simple MCMC algorithms

(such as Metropolis)
Run in time polynomial in dim(state space)
Polynomial algorithm scenarios:

• Volume of convex body for large # dimensions
• Sampling from log-concave distributions
• Sampling from truncated multivariate Gaussians
• Sampling matches from a bipartite graph (stereo)



Perfect Sampling
Algorithms guaranteed to produce an independent 
sample from p(x)
Current limited, computationally expensive
Some work on general perfect samplers

perfect slice samplers



Adaptive MCMC: Motivation
We would like to stay in “good”
states for a long time, thus reduce
variance of proposal distribution
Automate choosing of proposal
distribution such that (one of):

q is closer to the target distribution
We ensure a good acceptance rate
Minimize the variance of the estimator

Too much adaptation is bad
Violates Markov property of K
p(xi|x0...xi-1) no longer becomes p(xi|xi-1)

from Andrieu et al. An Introduction to MCMC
for Machine Learning.  Machine Learning, 2002.  



Adaptive MCMC: Methods
Preserve Markov property by adapting only during 
initial fixed # steps

Then use standard MCMC to ensure convergence
Gelfand and Sahu 1994

• Run several chains in parallel and use sampling-importance-
resampling to multiply kernels doing well, suppress others

• Monitor transition kernel and change components (like q) to 
improve mixing

Other methods allow continuous adaptation
Retaining Markov Property
Delayed rejection, Parallel chains, Regeneration
Inefficient


