Numerical Bayesian
Techniques
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= How to evaluate integrals?
= Numerical integration
% Monte Carlo integration
® Importance sampling
= Metropolis algorithm
® Metropolis-Hastings algorithm
# (1bbs algorithm
#® Convergence
= examples




How to evaluate integrals?
= In the previous lessons we have seen, how to
choose priors and how to obtain the posterior

distributions

® We, generally wish to evaluate some point
estimates or predictive distributions based on the
computed posterior

# This involves integration over some variables
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= If the model 1s simple and nonhierarchical and
involves conjugate distributions this may be simple.

= However, many cases are more complicated and 1t 1s
difficult to evaluate the integrals analytically
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#» Marginalisation integral

+ Suppose 0 = (61,....6}) (multidimensional
parameter)
+ We have calculated ™ (9 ‘ T ) and we want to

calculate the posterior for one parameter only

T(0; | x) = /W(Qa’:) do_;,

+ Where
9_'3: — (91" v '?Q’i—lﬁg’ij v 1911,,)

+ This 1s a k-1 dimensional integration
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= Expectation integral

+ That 1s, when we are trying to evaluate a point estimate

El|x) = /9??(9:1:) df

+ In many cases, 1t 1s very difficult or impossible to evaluate
the integral analytically

+ This was one of the main problems with the Bayesian
approach




Example: shape parameter of the
Gamma distribution
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3
04 a_ o
f(iI’ ‘ Q, 3) _ { ZI"} 16 ox
F(Jﬁ)
% Assume that a is known and we observe L1, -.-..,Lp

% Take the prior as uniform distribution
#* The posterior is proportional to:

anﬁ n p-1 —aixi
x,| e
r(p) 1T+

Difficult to have closed form itegrals over this integrand

Ak




Solution?
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* Numerical integration techniques

= Suppose we wish to integrate

[, g(0) de

* Various techniques exist.

* Simplest one: finite difference approximation




Finite difference approximation

———— e — A —— A —— A — — A — —— — A — —
# 1.Find a value of @__ beyond which g(6) is negligible
% 2.Split (0,6 ) into N equivalent intervals. Then

max

~ N
0) dO =~ 1 060) 06
 Where [ 9® > 9 50

50 = O/ (N — 1)
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* Numerically inefficient since we need very large N for good
approximation

* When we have multiparameters, you need to form grids

= Where the distributions are peaked you should use finer, that
1s nonregular grids!

= 1t gets too complicated to apply this method
= Alternative: Monte Carlo methods




What 1s sampling good for?
= MC techniques used for integration and optimization

problems
+ Bayesian Inference and Learning
« Normalization
* Marginalization

» Expectation
+ Statistical Mechanics
+ Optimization
+ Model Selection




The Monte Carlo Principle
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* Draw an i.i.d set of samples {x"}" from P(X)

* Approximate target density

-
pn (x) = N Y 60 ()
i=1

Approximate integrals

N
IN(D) =516 25 1) = [ f@p)d
i=1

N—=oo Y

JE

var (I (f)) = +



Monte Carlo methods
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= We do not need to numerically calculate the
posterior density function but try to generate values

with its distribution.

% Then we use these values to approximate the
density functions or estimates such as posterior
means, variances, etc.

= Various ways:
+ Rejection sampling

+ Importance sampling




Monte Carlo principle
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* (G1ven a very large set X and a distribution p(x) over it
= We draw 1.1.d. a set of N samples

* We can then approximate the distribution using these samples

p(x)

Py =X =0 5 p(x)




Monte Carlo principle
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= We can also use these samples to compute expectations

Ev(N) =2 f) = E(N=X f(x)p()

* And even use them to find a maximum

x = arg max[p(x")]
(1)
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Rejection sampling
———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
More generally, we would like to sample from p(x), but it’s
easier to sample from a proposal distribution q(x)
q(x) satisfies p(x) < M q(x) for some M<oo
Procedure:
+ Sample x from q(x)
+ Accept with probability p(x(V) / Mq(x®)
+ Reject otherwise

The accepted x are sampled from p(x)!
Problem: 1f M 1s too large, we will rarely accept samples

+ In the Bayes network, if the evidence Z 1s very unlikely then we will
reject almost all samples



Rejection Sampling
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i

Seti=1
Repeat until i = N
1. Sample (P ~q (z) and u ~ U 1).

(@)
Mg(z®
1. Otherwise, reject.

2. If u < then accept (¥ and increment the counter i by




Example
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* Shape parameter of a Gamma distribution

#—1
‘?‘.I‘ OC g( — n (HIE) ’ 0 g 3§ =31115\3{

# Choosing umform prior, the prior 1s bounded and on
a finite interval

% We need to find a constant such that g(#) < C'f(0)
#* In this case c is c=maxg(6)/ B, =2.3810°




1. Generate a random number uq. Proposal density is

|
- <y <
f(y) = 5555 0 < v < 1000,

————
Thus v is then 1000 x uy (by inverse transtorm).

2. Generate a random number us. Accept y if

9y) "
Cfly ) B
F(u )" (11, T*)u s

>
2.38 x 1015 -

This 1s 500,000 proposals of which 557 (%0.11) are
accepted.




Example: Bayes net inference
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G e G % Suppose we have a Bayesian

network with variables X

= Qur state space 1s the set of all
G e possible assignments of values to
variables
e e * Computing the joint distribution is

in the worst case NP-hard

= However, note that you can draw a
| G G sample 1n time that 1s linear in the
size of the network

»* Draw N samples, use them to
Sample 2: FTFFTTTFF approximate the joint

Sample 1: FTFTTTFFT

etc.




Rejection sampling
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Suppose we have a Bayesian
network with variables X

We wish to condition on some
evidence ZeX and compute the
posterior over Y=X-Z

Draw samples, rejecting them when
they contradict the evidence in Z

Very efficient 1f the evidence 1s
itself improbable, because we must
reject a large number of samples



Importance sampling
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# The problem with the rejection sampling 1s that we
have to be clever in choosing the proposal density!

= Importance sampling avoids difficult choices and
generates random numbers economically.



Importance Sampling
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: : (i) N
In importance sampling we generate N samples {x*’}" from q(x)

To account for the fact we sampled from the wrong distribution we introduce weights

w(z) £ 22 VAT
e ) = ff(r} w(z) g (c) do e e
N | |
Monte Carlo estimate of | (f) Iy (f) = E f (Im) w(z®)

Choose proposal distribution to minimize variance of the estimator

vary ) (f(z)w(z)) = Eyp (f?(m)wi‘(;g)) —I*(f)

Optimal proposal distribution g (z) = li ||_}f{{j})|Lf[F:]}dz




Importance sampling

——— e — e — — e —— e — — A — — A — — A — — A — — A — ———
Also called biased sampling

It 1s a variance reduction sampling technique

Introduced by Metropolis in 1953

Instead of choosing points from a uniform distribution, they are now
chosen from a distribution which concentrates the points where the
function being integrated is large.

' jg(x

Sample from g(x) and evaluate f(x)/g(x)

The new integrand, f/g, is close to unity and so the variance for this
function 1s much smaller than that obtained when evaluating the function
by sampling from a uniform distribution. Sampling from a non-uniform
distribution for this function should therefore be more efficient than doing
a crude Monte Carlo calculation without importance sampling

L

L

X )dbx

L




Markov Chain sampling
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# Recall again the set X and the distribution p(x) we wish to
sample from
Suppose that it is hard to sample p(x) and difficult to suggest

a proposal distribution but that it 1s possible to “walk around”™
in X using only local state transitions

i

* Insight: we can use a “random walk” to help us draw random
samples from p(x)

P(Xx)
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* That 1s, 1f our sampling follows a well defined
structure, 1.€. 1f our sample at one instant depends on
our sampling the step before there are things we gain

# This 1s Markov Chain Monte Carlo Sampling and
we will see how we benefit from a “random walk”

# MCMC theory basically says that if you sample
using a Markov Chain, eventually your samples will
be coming from the stationary distribution of the

Markov Chain.
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* The key to Markov Chain sampling’s success 1s the
fact that at every iteration you sample from a better
distribution which eventually converges to your
target distribution while in importance sampling,
you always sample from the same (and wrong)
distribution.

# We start by reviewing the Markov process theory.
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Markov chain 1s a process

———— A — A —————— ———— — — — A —— ——

We are dealing with a sequence of random variables

{Xn}nzo

and give them a (parametric) statistical model, which
permits dependencies between different random
variables. Models like this are called stochastic
processes. | he index n i1s here taken to indicate ‘time’.
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Consider a set S= {FE,, FE>,...,FE;} and sequence of

random variables X, X;,...,X,,, ..., assuming values

K

In .S. The symbols E; are called states (and can des-
ignate all kinds of things) and S is also called the state

space. We give the state E; the label j and take for

simplicity of typing S= {1,2,...,J}.




Markov Chain

———— A — A —————— ———— — — — A —— ——

i

' A sequence of random variables {X,,}, _, Is called a
Markov chain,(MC), if for all n > 1 and jg,71,...,79, € S,

P (Xn — jn|Xﬂ — ji}:Xl = J1y--- aXﬂ—l — jﬂ—l) —

P (Xn — jn|Xn—1 — jn—l) .

The condition is known as the Markov property.




A.A. Markov 1856-1922
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Memory
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The significance of an MC lies in the fact that if X,, = j,
Is a future event, then the conditional probability of this
event given the past history

Xo =70, X1=71,..., Xn_1 = jn—1 depends only upon
the immediate past X,,_1 = j,—1 and not upon the
remote past Xo = jo, X1 = j1,...,Xn—2 = jn—2.



Other properties
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The Markov property above Is perhaps straightforward
to state, since there Is a natural order for integers n.

* There are various different Markov properties, e.g.,
for probabilities on directed acyclic graphs
(Bayesian networks).

* There are definitions of Markov property for
random fields, e.g., relevant (7) in image analysis.




Chain rule of probability
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By iteration of the definition of conditional probability
we get the following identity valid for any sequence of
random variables

P(Xy =2y, Xm =1,) =

Tre

Tre
=[P(Xi=o, | X1 =2y, ... Xisy =2y,

i=1

where

P(Xi=ua, | Xo=ua,) =P (X1 =ux,).



Modelling by chain rule

———— A — A —————— ———— — — — A —— ——

The model

PXi=zy, -, Xpn=2z, )=

TrL

Tre

— ]:[JE—_*’(}F',’:1 = Iy, |_X1 ZEM---Xi—i ZLEI'-:'—I)

1=1

where

P (X, =, | XD=.’Egn)=P(X1 =:.’L‘gl).

Is for obvious reasons unpractical: There will be too

many parameters (conditional probabilities).
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Let {X,} -~ , be Markov chain. If X,, = j, we say that

n=>0
the the chain is in state j at time n or that the chain
visits the state j at time n. The conditional probabilities
Pilj = P(Xp=j|Xn-1=14),n2>214,j€S

are assumed to be independent of n (temporally
homogeneous), I.e.,

pi =P (X1=j|Xo=1),i,j €S

and are called (stationary) one-step transition probabil-

ities.



Transition matrix

———— A — A —————— ———— — — — A —— ——

The numbers p; ; are taken as entries in a matrix

from E;
from E,

from E;_,
from E|

to Ey
P11
P21

Py-1)1
Py

P = (py;)

to s
P12
P22

Pj-1)2
D2

J,J

i=1,j=1
to £y,
P1|J-1
Pa|j—1

Py-1)J-1
PylJ-1

to Ey
P1|g
P2|g

Pj—1|J
Pl



———— A — A —————— ———— — — — A —— ——

g

P = (pi|j)i¥1}j=1
/ Pip P2 --- PiJg \
p_ PL’-'|1 P2_|2 - Pi.tu
\iﬂ,..r|1 Pjlz --- PJgg /)

Thus P is an J x J matrix to be called a transition ma-

trix.
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The i : th row of P is the conditional probability
distribution of X,,,1 given that X,, = i (or, as well,
distribution of X; given that Xy = i). Clearly the
following properties hold true:

J
pilj =0, pijj = 1.
=1




Example
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A binary Markov chain has a state space designated by {0, 1}. If at some stage 0 is seen,
'then at the next stage 1 will be seen with probability p and 0 will be seen with probability
1 —p. Ifalisseen, then at a next stage 0 will be seen with probability ¢ and 1 will be
seen with probability 1 — g. This corresponds to the transition matrix



State transition graph

— A ——— — A — A — e —— A — — S — ———

1
P — Yz r
dq 1 —gq

The structure of a state transition graph without the

probabilities is known as the topology of the graph.




Markov Chains of k-th order

———— A — A —————— ———— — — — A —— ——

A sequence of random variables {X,} _, is called a

k:th order Markov chain |, If for all n > 1 and jg, j1,..., /»
€ S,

P (Xn — jﬂ|Xﬂ - jﬂ:'Xl — jl; e 1Xﬂ—1 = j”_l) —

=P (Xn = jn-|Xn—k = Jn—ks---s Xn—1 = jﬂ—l)?

for a positive integer k.
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The MC in our primary definition is called a first order
Markov chain. An |.1.D process assuming values in S

would in this respect be called a Markov chain of zero
order.




Joint probability distribution of a
Markov Chain

———— A — A —————— ———— — — — A —— ——

By successive iterafions of the defi nition of conditional probability and by successive
uses of the chain rule and of the Markov property

P (X0 = jo,- > Xn_1 = jn_1,Xn = ju) =

P[-xn :jn|xﬂ :jDr---:Xn—l Zjn—l}'P[Xﬂ =jﬂ-r~--:-:’l{n—1 :jn—l} —

P{xn :jnixn—l. zjn—i;] ’ P(J{D zjl}:." *:Xn—l :jn—lj —




———— A — A —————— ———— — — — A —— ——

P _1lin P (Xn-1=jn|Xo =jo,- .. Xn—2 = jn-2)-P(Xo =jo,.. ., Xn—2 = jn-2) =

= Pjp_1lin " Pin_alin_1 - Pjoljs " PXo (J0) =

= PXxy [jDJ .pjﬂljl e ‘lpjﬂ—EUﬂ.—l .Pjﬂ—lljﬂ'




———— A — A —————— ———— — — — A —— ——

If {X.,.},_,is a Markov chain with stationary transition
probabilities, then

7L
P (X{] = J0, X1 = J1,-..,Xp = jﬂ) = PX, (-?'D} Hpji—lljl'
=1

This shows that the probabilistic properties of a Markov
chain are completely determined by its one-step transi-
tion probability matrix and the probability distribution at
0.




Parametric statistical model

— e — i — i — e — — - — — - —
We write
{Xn}, o ~ Markov (P, px,) ,

where

This is a parametric model. One way to assign
parameters is

O = (P.px,)

by which we mean the J..J — J (free) parameters in P

and the J — 1 parameters Iin py,.



N-step transition probabilities

———— A — A —————— ———— — — — A —— ——

The conditional probabilities
p3|J(ﬂ) :P(Xm+n:jlx :E),ﬂ = ]_.?:._}' e S

are also independent of m. The probabilities p; ;(n) are
called the n -step transition probabilities. Then

P(n) = (py;(n)]7 .,

Is the n—step transition matrix. We define

1 if =
p*"-”’(m_{ 0 ifj#£i



———— A — A —————— ———— — — — A —— ——

J,J
Is the n -step transition matrix. Then

P(1) =P

as defined above.




Chapman-Kolmogorov equations

———— A — A —————— ———— — — — A —— ——

Forallm,n>=1andi,j €5,

J
pijj(m +mn) = pip(m) - prj;(n).
k=1




In matrix form:

———— A — A —————— ———— — — — A —— ——

Using a matrix notation we can write the Chapman -
Kolmogorov equation as the following matrix
multiplication

P(n+m)= P(m)- - P(n).

Proof: straigthforward but lengthy. Look at
Thomas Cover: Elements of Information Theory




Power

A — — A — — A —— A —— A — — A —— A — — - — — A ——
P(n) = P".

Proof: This is easily proved by induction. The case
n = 1 follows by definitions

P(1) = P = P!

Assume the claim holds for n, i.e., P(n) = P"™. Then by
Chapman-Kolmogorov

Pin+1)=P-P(n),
and by induction assumption

:P-Pﬂ:Pﬂ+1
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State probabilities

———— A — A —————— ———— — — — A —— ——

Let the distribution of X be denoted by ¢(0). In other
words,

qﬁ({]) — (an (1) e P X (J)) -
This will be called the initial distribution. Let us denote
by
6(n) = (p(Xn=1),....p(Xn = J))
| the 1 x J vector of the probabilities that the chain visits

state 5 at time n.




———— A — A —————— ———— — — — A —— ——

By marginalization

Jg
p(Xn=173)= zpﬁdj P (Xp—1 = k).
k=1

This we write using a matrix notation as

(n) = ¢(n — 1P




———— A — A —————— ———— — — — A —— ——

A Markov chain {X,} - , may be such that the

probability p (X,, = j) Is iIndependent of n for all j in the
state space. A distribution = an invariant or stationary
distribution, with

If p(Xo=j) =m; for all j implies that p (X, = j) = =; for
all 5.




———— A — A —————— ———— — — — A —— ——

Let {X,,}. -, ~ Markov (P, ¢(0)). Every stationary

=0

(invariant) distibution satisfies the equation

=7

(7 1S a row vector) with the constraints

J
E my = l,TT‘j E{].
j=1




Proof

———— A — A —————— ———— — — — A —— ——

Assume first that = is an invariant distribution. Then
23;1 7; = 1 and ; > 0 are clear. Since x Is invariant,
by the definition above we must have ¢(0) = = and

@(1) = «. But since
we get that

T = 7 P.




———— A — A —————— ———— — — — A —— ——

‘Assume now that r satisfies = = 7P and the other
constraints. Let ¢(0) = 7. Then

6(1) = p0)P = 7P =1

and 7 1s an Iinvariant distribution. N




Existence of a stationary distribution

———— A — A —————— ———— — — — A —— ——

| Every MC with a fi nite state space has at least one invanant distribution Proof: We give
' only an outline of the proof. Let p be an arbitrary probability distribution on S. Set

1 B
p'™ =—(p+pP +pP? 4.+ pPY)

This Is a sequence of probability distributions, 1.e. vectors with components with values
between zero and one. Thus the well known theorem of Bolzano and Weierstrass shows
that we can pick a convergent subsequence p!™) which converges componentwise fo

the vector ¢. We can show that ¢ is a probability distribution.




———— A — A —————— ———— — — — A —— ——

By our construction we have the recursion relations

1

(41} — TE I:‘r'l._] P'?'I:-
P -+ 11'.'-' - T+ 11'3
and
pin+l) = ™ in)p
b mn 4+ lpI - 2 4+ lp'

From the recursion above we get that

and then we get that

T = wlP

which proves the claim.




———— A — A —————— ———— — — — A —— ——

' The components in the stationary distribution can be
Interpreted as the asymptotic percentages of ‘time’ the

chain spends in each of the states.




Stationary distribution

———— A — A —————— ———— — — — A —— ——

Then # = 7P i1s solved by

- (57 7%5)
P+q p+gq

The components in the stationary distribution are
perhaps more explicitly visualized as the asymptotic

percentages of time the chain spends in each of the
states.




———— A — A —————— ———— — — — A —— ——

Is there convergence to a stationary distribution for
any ¢(0) ? Let {X,,},—, € Markov (P, ¢(0)). Let us
assume that

lim ¢(n) = a,

n— 0

where a = (ay,...,ay) 1s a probability distribution. Then

a 1S an invariant distribution.




———— A — A —————— ———— — — — A —— ——

Taking of limits yields

a= lim ¢(n)= lim ¢p(n+1) =
—00 N—00

— lim (¢(n)P) = (um gﬁ(n)) P =aP.

n—00 N—00




———— A — A —————— ———— — — — A —— ——

(a) An MC is aperiodic, If there Is no state such that
return to that state is possible only after ¢, 2¢g, 3tg
... steps later.

(b) An MC is irreducible means that every state can
be reached from any other

state, If not In one step, but then after several
steps.




Convergence to a unique mnvariant
distribution

———————— — - — — - —————— — A — - — — S — —
|If a finite MC Is aperiodic and irreducible, then for any
?(0)

lim ¢(n) =,
n—00

where 7 IS a unique probability distribution that
satisfies

T =kl




Markov Chains for sampling

———— A — A —————— ———— — — — A —— ——

* To sample from p(x), we require
u(x")T" —>p(x)
* The stationary distribution of the Markov chain must be p(x)
pl=p

= [f this 1s the case, we can start in an arbitrary state, use the
Markov chain to do a random walk for a while, and stop and
output the current state x(

*= The resulting state will be sampled from p(x)




Markov Chain Monte Carlo

———— A — A —————— ———— — — — A —— ——

% Strategy for generating samplesx”, while exploring the
state space X using a Markov chain mechanism

0.1

T=1| 0 0109
0.6 0.4 0




Stationary distribution

——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
# Consider the Markov chain given above:
0.7 03 0

T= |0.30403

0 0.30.7
= The stationary distribution 1s

[0.33 0.33 0.33] x |07 03 0 |= [0.33 0.33 0.33]
0.3 0.4 0.3

0 030.7

= Some samples:
1,1,2,3,2,1,2,3,3,2
1,2,2,1,1,2,3,3,3,3
1,1,1,2,3,2,2,1,1,1
1,2,3,3,3,2,1,2,2,3
1,1,2,2,2,3,3,2,1,1
1,2,2,2,3,3,3,2,2,2

Empirical Distribution:

[0.33 0.33 0.33]




Reversibility

———————— — - — — - —————— — A — - — — S — —
It can be difficult to work with irreducibility and

aperiodicity so more often we simply consider
reversibility.

Reversibility is sufficient but not necessary.

The distribution 7 is invariant for p(.|.) if we
have detailed balance (reversibility):

w(0)p (¢ 16) =7 (¢)p(0]0)




———— A — A —————— ———— — — — A —— ——

Think of reversibility as requiring a balance in
the flow of probability

- —
_...-__—- - o



Detailed Balance

——— e —— A — — A — — A —— A —— A — — A —— A — — A — — A ——
# Claim: To ensure that the stationary distribution of the Markov chain is

p(x) 1t 1s sufficient for p and 7 to satisty the detailed balance
(reversibility) condition:

p(x )T [x) = p(x ) T(x? [ x)

Summing over (i-1)

Zi_lp(x(i))T(X(i—l) | X(i)) _ 21_1 p(X(i—l))T(X(i) | X(i—l))
p(x") =2 px"HTE" |x"™)




Ergodicity
——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
# Claim: To ensure that the chain converges to a unique
stationary distribution the following conditions are sufficient:

+ Irreducibility: every state is eventually reachable from any start state;
for all x,yeX there exists a ¢ such that

(1)
p, (¥)>0
+ Aperiodicity: the chain doesn’t get caught in cycles; for all x,yeX it 1s
the case that

ged{r:p(y)>0} =1

= The process 1s ergodic 1f it 1s both irreducible and aperiodic
= This claim 1s easy to prove, but involves eigenstuft!



How to pick a suitable Markov
chain for our distribution?

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
* Suppose our distribution p(x) 1s easy to sample, and easy
to compute up to a normalization constant, but hard to

compute exactly
+ ¢.g. a Bayesian posterior P(M|D) a P(D|M)P(M)
# We define a Markov chain with the following process:

+ Sample a candidate point x* from a proposal distribution q(x*|xV)
which is symmetric: q(X|y)=q(y|x)

+ Compute the importance ratio (this i1s easy since the normalization
constants cancel)
PG

p(x®)

+ With probability min(7,1) transition to x*, otherwise stay in the same
state




Metropolis intuition

— A — — A — — A —— A —— A — — A —— A — — A — — A ——
# Why does the Metropolis algorithm work?

+ Proposal distribution can propose anything it
likes (as long as it can jump back with the
same probability)

+ Proposal 1s always accepted if it’s jumping to
a more likely state PO
+ Proposal accepted with the importance ratio if
it’s jumping to a less likely state

# The acceptance policy, combined with the XX x
reversibility of the proposal distribution,
makes sure that the algorithm explores states
n proportion to p(x)!



Metropolis convergence

———— e — A —— A —— A — — A — —— — A — —
# Claim: The Metropolis algorithm converges to the
target distribution p(x).

»® Proof: It satisties detailed balance
¢ For all x,yeX, wlog assuming p(x)<p(y)

candidate is always

p(x)T'(x,y) =p(x)g(y | x) accepted bic p(x)<p(y)
=p(x)g(x|y) is symmetric

p(x)

p(y)

=pWT(y,x) transition prob bic p(x)<p(y)

=p(¥)q(x|y)




Metropolis-Hastings
———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
= The symmetry requirement of the Metropolis proposal
distribution can be hard to satisty
* Metropolis-Hastings is the natural generalization of the
Metropolis algorithm, and the most popular MCMC
algorithm

* We define a Markov chain with the following process:

+ Sample a candidate point x* from a proposal distribution q(x*|x®) which is
not necessarily symmetric

+ Compute the importance ratio:

L p()q(" [ x)
p(x“)q(x" [x)

+ With probability min(r,1) transition to x*, otherwise stay in the same state x*




Metropolis Hastings

———— A — A —————— ———— — — — A —— ——

1. Initialise z(0).
2. Fori=0to N -1
—  Sample u ~ Ujp 1.

—  Sample z* ~ g(z*|z(9).

— fu< Az, 2*) = min{l ple)a(z_|z) }

? p(z)g(z*[2)

pli+l) — p*

else




MH convergence

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
= Claim: The Metropolis-Hastings algorithm converges
to the target distribution p(x).

* Proof: It satisfies detailed balance

+ For all x,yeX, wlog assume p(x)q(y|x)=p(y)q(x[y)

PCOT(x, ) = () (v ] %) e sy et
) p(»)g(x|y)

p(»g(x|y)

p(x)g(y | x)

p(¥)q(x]y) )

=pWT(y,x) gfacn;?x?;(;rxzzp(y)q(x|y)

=p(x)q(y

=p(¥)q(x|y)




advantages

———— e — A —— A —— A — — A — —— — A — —
= The symmetry requirement 1s avoided.

= Allowing asymmetric jumping rules can be useful in
increasing the speed of the random walk




——— A — A — A —— A —— A — — A —— - — ——— — - ————
® A good jumping distribution has the following
properties:
+ For any 0, 1t is easy to sample from J(0*| 0)
+ [t 1s easy to compute the ratio of importance ratios r

+ Each jump goes a reasonable distance in the parameter
space (otherwise the random walk moves too slowly)

+ The jumps are not rejected too frequently (otherwise the
random walk wastes too much time standing still)




Metropolis Hastings

— A — — A — A —— A — — A —— A — — A — — A —— 4 —
If A(x',x )=1, then the new state is accepted

p(x)q(x” [x")
p(x)q(x" | x")

Otherwise, the new state 1s accepted with probability

a'=1 a'=100




The Transition Kernel

———— A — A —————— ———— — — — A —— ——

The transition kernel for MH algorithm

Kuu (2020 = g(z20 )20 A(z@, 204D) 4 5

X

6 (2 r(2?)

Rejection term -

r(z®) = [:r g(z*|z®) (l — A(m(i),:c*)) dz*

rx”)=2, " [x")(1-AK",x")
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G1bbs sampling

———— A — A —————— ———— — — — A —— ——

L

b L
Ll

A special case of Metropolis-Hastings which is applicable to
state spaces in which we have a factored state space, and
access to the full conditionals:

POX | Xy sy X X 50y X))
Perfect for Bayesian networks!
Idea: To transition from one state (variable assignment) to
another,
+ Pick a variable,

+ Sample its value from the conditional distribution
+ That’s 1t!

We’ll show in a minute why this 1s an instance of MH and
thus must be sampling from the full joint



Gibbs Sampling

———— A — A —————— ———— — — — A —— ——

e
fol

3%

G1ibbs sampling 1s the simplest and most easily implemented
sampling method for MCMC. However, the problem has to
have a particular form 1n order for it to work.

The 1dea 1s as follows. Consider a problem with two
parameters, 6, and 6,. Suppose we have available the
conditional distributions

p(el |929D) and p(82|819D)

where D 1s the data (not needed). Then, starting at some
initial point (6!”,6.”) in parameter space, generate a
random walk, a sequence (6" ,6") as follows:



Gibbs Sampling
% Fork-l,..ndefine
4" ~ p(6, 164", D),

Hék) ~ p(6, | ka)aD)
where ‘~’ means here that we draw the value in question
from the indicated distribution.

* The resulting sequence of values is a Markov chain; the
values at the (k+1)st step depend only on the values at the Ath
step and are independent of previous values

#* The Markov chain will in general tend to a stationary

distribution, and the stationary distribution will be the desired
P ( 919 92| D )




Gibbs Sampling

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
# The method generalizes to a large number of
variables, e.g.,

Hl(k) = p(gl | 92(1(—1), H?Ek_l)r ©e g’(nk—l), D):
g5 ~ p(6, | 6%,8%,...,0% D, D)

e, ~p66".6",....6,

m—1°

D)




G1bbs sampling
——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
= More formally, the proposal distribution 1s
g(x"|x) = T p(x; [X5) it =,

0 otherwise

# The importance ratio 1s
L _PO)a(x|y)

p(x)q(y|x)
_P )plx, [ X)) Definition of
p(X)p(y.|y_ ) proposal distribution
JVS =]

— p(y) p(xj X ) p(y—j) Defin-it_ionn of
p(x )p(y;,y_)p(x_;)  conditional

probability
p(y_j) B/c we didn’t change
= = other vars
p(x_;)

= So we always accept!




Gibbs sampling example

———— A — A —————— ———— — — — A —— ——

#* Consider a simple, 2 variable Bayes net

05 | 05 b b
b b
08 | 02 a 1 1
02 | 08

a 1 1

# Initialize randomly

* Sample variables alternately




Practical 1ssues

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
= How many iterations?
= How to know when to stop?

% What’s a good proposal function?




G1bbs Sampling

——— e — e — e — — A — e — — e — — e — — - — — A — — i — — - —
* One particular choice of cycle kernel

+ Make each variable a block

# Proposal distribution: p(x;|x;,)

+ For a Bayes Net, this 1s p(x;|markov blanket(x,))

0 Otherwise.

= This choice of g yields an acceptance probability of
1 (““deterministic scan”)

a(z+z®) = { patlal))  Ia*;=al)

* Sampling from g may require additional MH steps




Gibbs Sampling
———— e — A —— A —— A — — A — —— — A — —
* Suppose we have normally distributed estimates X, i=1,...,N,

of a parameter x, with unknown variance ¢®. The likelihood
1S

p(X|x,0) < o Nexp(—X(X—x)*/2 0°)

* Assume a flat (uniform) prior for x and a “Jeffreys” prior 1/0°
for 0. The posterior is proportional to prior times likelihood:

px,01X) o= TN Dexp(-Z(Xx)2/2 )

(The Jeffreys prior is do/o o< do?/0?%; it is commonly used as
a prior for scale variables. For technical reasons having to do
with the distributions available in R 1t’s best to think about
sampling o instead of o so we use d6*/ %)




Gibbs Sampling
——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
= The posterior distribution can be simplified using the
trick of "completing the square"

/_Z(Xl.—x+x—x)2]

p(x,0° | X) o< 07" exp

_ S ) ( N()“c—x)zj
— (N+2) XX
=0 exp| — exp| —

Xp( 207 AP 207

p(x|0°,X) = p(x,0° | X)/ @@
Depends only

on o



Gibbs Sampling
———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
® When sampling x, o will be fixed, so we can ignore
factors dependent only on 0. Let X be the sample
mean as we defined it before. Then the conditional
distribution of x can be rewritten, apart from
constant factors

p(x] 0, X) e eXp(—

N()_c—x)zj

20"

# This 1s readily seen to be normal with mean x and
variance ¢?/N. So that’s the distribution we need to
use for sampling x in each Gibbs step.




Gibbs Sampling
———— e — A —— A —— A — — A — —— — A — —
* The conditional distribution for }*=X(X—x)*/ o is even easier,
going back to the original posterior (3 pages back):

d 2
P |0, X) o () exp(- 12 12)5

dy’
S \N/2-1 5
=(r’) " exp(-1"/2)

, 1 do’ 1
O =— SO =

£ dr (1)

* This is a standard chi-square distribution on N degrees of
freedom, and R has a function for drawing samples from that
distribution. We can then get a value of ¢® by dividing £(X—
x)? by the value of »? that we sampled. That allows us to
sample o at each Gibbs step

)N/2+1




——— - ——— ——— - — - — — S ———— — i — — S — —
Recall previous example in which we have data
X; ~ N (f?,-:rz) with independent priors for @
and o2:

¢ ~ N (,u,, 02)
72 ~ T (e, f)

Although we saw that the resulting posterior
was not in standard form it is possible to find
full conditionals for the parameters ¢ and o=2.




T he joint posterior is given by:

(0072 | z) o (az)—ﬂ—”f 2—a L
< EXP {—% — w,;_‘;)
S (m—0)2 }
Dy

If we consider this to be a function of & the
the full conditional of ¢ must be proportions:

to
L |, [
=0 {-3(#(a+) -2 (Z+73))}
Hence the full conditional is:

_EZEE-FH-E
0| o2,z ~ N( =2 -+ n —2n+m)




———— A — A —————— ———— — — — A —— ——

Similarly, the full conditional of ¢—2 must be
proportional to

(+72) atn/241 {_G_—E% (8= (ai- {;))}

Hence the full conditional is:

o2 |z ~ T (‘:‘5+ﬂ/r2:ﬁ+2(}i _.”)zfz)

We implement the Gibbs sampler by alternately
drawing @ and ¢—2 from these distributions.




——— - — - — ——— — - — - — - — — —— i — — - ——
In two dimensions (k=2) the sample path of
the Gibbs sampler should look something like
this.

o4




Example: Fitting straight line

We have a set of 5 observed (@x.y) Dpairs »-
(1L,1).(2.3),(3.3).(4,3),(5,5). We shall fit

a simple linear regression of y on o using the
notation

Y; ~ N (60%)
¢ = a-+ G(xr; —T)

Classical unbiased estimates are

o = ir = Z.00

3 = > w(m—D) /> (@ —FF = 0.80

T2 = S Qs — ) S (n—2) = 0Q.533
var (&) = 7= 11 = Q.107
Var (5) = TS " (ay — T = 0.053

a5% interval for o«
a95% interval for 7
a95% interval for o

1)
T Tdn]
o0+
20
= 6
|—'I.
(n
W
Ly




————

The full conditionals for the parameters «, 3
and o2 are .-

alB,o% ~ N(ﬂ%(n—l)s’:—ﬁ,%az)
Blaye 2 ~ N(ﬂZ(Ea—ﬁ)/’Z(m{—ﬁ)z
-Y wlw—- /Y (@i - T)
!02/’2(-?1_5)2)

-2 "y n l o = B — T))2
2 af o T (51T - -D))

Updates are conducted by sampling from each
of these three conditional distributions in turn.



Advanced Topics

———— e — A —— A —— A — — A — —— — A — —
= Simulated annealing, for global optimization, 1s a
form of MCMC

= Mixtures of MCMC transition functions
® Monte Carlo EM (stochastic E-step)
#® Reversible jump MCMC for model selection

* Adaptive proposal distributions




Simulated Annealing

———— A — A —————— ———— — — — A —— ——

1. Initialise 2(?) and set Ty = 1.
2. Fori=0to N -1

— Sample u ~ Ug 1)

—  Sample z* ~ g(z*|z?).

L .
— fu< A(:Ir(ﬂ,:l?*) = min{l, pTi (z*)g(e®]z") }
pli (zl)g(z|z)

$(z‘+1) — r*

else
2+ — ()

— Set T;y1 according to a chosen cooling schedule.




MCMC Mixtures and Cycles

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
#® If K, and K, are transition kernels for p(x), then
the following are valid kernels:
+ K K, (cycle hybrid kernel)
+vK, +(1-v)K,,0<v <1 (mixture hybrid kernel)
* What’s the Point?

+ K, and K, can have different behavior
* Global vs. local (mixture)

* One set of variables vs. others (cycles)




Using a Mixture of Kernels

———— A — A —————— ———— — — — A —— ——

= Use u to decide between K, and K,
+ Global K locks into peaks

#+ [Local K does random walk 1n that area

1. Initialise z{9),
2. Fori=0to N -1
— Sample u ~ Ujg 1.
- fu<v
Apply the MH algorithm with a global proposal.
— else

Apply the MH algorithm with a random walk proposal.

from Andrieu et al. An Introduction to MCMC for Machine Learning. Machine Learning, 2002.




Cycles of Kernels

———— A — A —————— ———— — — — A —— ——

= Split multivariate state into blocks for separate

updating
" . Initialise '),
= Update blOCk ; Fo:a' =0to N—1

bl given all Other — Sample the block ..'Ei{:l ac;irlciing to an .MH‘step .wit.h p'ro—

posal distribution ¢ |.:-;' [b1 ],:z'bl ] and invariant distribution

blocks bj and pleit el

— Sample the block ..'-:; L according to an MH step with pro-

preVlOUS Value posal distribution g2 (z; ’H) |m(a+bi]), ;::rb2 ') and invariant distribution

(i41) | {?—H.]I

of b, sl

— Sample the block 9:;“) according to an MH step with proposal
distribution qm(m(iﬂ} h?;,”] :EEJ) and invariant distribution
(i+1) i+1
(ma |m{—[b"i])*

from Andrieu et al. An Introduction to MCMC for Machine Learning. Machine Learning, 2002.



Monte Carlo EM (MCEM)

———— e — A —— A —— A — — A — —— — A — —
= The EM algorithm
+ E: Compute expected log lhood over p(h|v,t)

Q(0) = /,1» log (0(n, ©|0)) p(@n|z0, 0©)das,
h

+ M: Maximize log lhood wrt parameters theta

® The integral over all variables can be hard
+ Approximate via sampling (E-step)
+ Do M Step as usual




MCEM: Procedure

1. Initialise (ILG},E':“}'] and set i = 0.

2. lteration i of EM

— Sample {:ﬂi‘ﬂ}fz*l with any suitable MCMC algorithm. For exam-
ple, one could use an MH algorithm with acceptance probability

— {1 p(zo|z, 00 V)p(a} |00~ )g(3 |27) }
plao|zy,66-0)p(xf) 1061 g (x|}

— E step: Compute

N.

5 :

Q6) = 5 > logp(a;, z.[6)
1 le

— M step: Maximise 8! = arg max @[H],
9

3. i+ 1+ 1 and go to 2.

from Andrieu et al. An Introduction to MCMC for Machine Learning. Machine Learning, 2002.



Auxiliary Variable Sampling
——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
® Sometimes easier to sample p(x,u) than p(x)

+ Obtain samples of p(x) by ignoring u
= Hybrid Monte Carlo

+ Use gradient of target distribution

* p(x,u) = p(x)N(u; O.1,)
+ Take L “frog leaps” in u# and x

Ax ] dlog p(x)/ox

Ty =T + pui_y
w = w1 + mA(zi)

+ Lth value is the proposal candidate for MH with p(x,u)



Auxiliary Variable Sampling (1I)

———— e — A —— A —— A — — A — —— — A — —
= The Slice Sampler

+ General version of Gibbs Sampler
1 it 0 <u < plr) il

o s
? {iﬁ 'H-} 1 0 otherwise. Where/p*(;{;!u]du :f du:p(i]
0

+ Conditionals:

plulz) = Upp))(u)
|

z|u) = Ua(z) A= {IP{*L} = 'u,}

from Andrieu et al. An Introduction to MCMC for Machine Learning. Machine Learning, 2002.



Convergence

———— A — A —————— ———— — — — A —— ——

We know that our Markov chain will only
resemble our posterior distribution =« (.) once
it has converged to its stationary distribution.

How do we decide when convergence has taken
place?

We might hope to define some measure
of similarity between P& (. |.) and = (.).
Unfortunately this is almost always impossible.

Most common approach is visual inspection of
the Monte Carlo output.




Visual mspection

———— A — A —————— ———— — — — A —— ——

(§] = -
L e = T e Y e i
q(e’] e"y=N(e'V,0.3)
_-1|] 1 1 | 1 | | 1 | -
0 50 100 150 200 250 200 3=0 400 450 SO0

MNumber of lterations




autocorrelations

———— A — A —————— ———— — — — A —— ——

Another useful diagnostic is to look at auto-
correlation plots.

Samples produced by a Markov Chain will be
dependent.

Too much dependence is indicative of poor
mixing.

We look at the chain's autocorrelation, high
autocorrelation will indicate poor mixing (and
hence poor convergence).

We take lags 1,2,3,... and for each we take
the set of all pairs separated by these lags and
calculate the autocorrelation coefficient.




———— A — A —————— ———— — — — A —— ——

1

T T T T T
of IIIIIIIIIII....IIIII _
1 1 1 1 1 1 1 1 1 1
10 12 14 0

1 T T T T T T T T T T

ok III..--f_—--!--—-_-! ]
18 20

'] 1 ']
0 2 4 G 2 10 12 14 16

Every 1ot sample

Every 20 ! samplu

ok IIIIII|IIIll.lllllll--|----.__|-l..lIIIIIII-.___.__.Ill--lIIl-

'l 1
] a m 12 14 15 18 20
Lag

OoOne way that we can reduce the
autocorrelation of our sample iIs to use only
every k' sample, discarding the rest.



example

———— A — A —————— ———— — — — A —— ——
Data on 10 power plant pumps.

INnterested in the number of fTailures of each
pPumMmp.

vve observe for each pump, 2, the number of
failures x; that occur within a time ¢; (hence
failures occur with observed rate p; — a; ;).

Assume that the number of faillures for pump

, x;, TOllOWws a Poisson distribution:

e %t (Ot )™
a; ! )

where &; 1s the true faillure rate for pummp «.

x; ~ Poisson (0;t;), 5O F (a;) =

Pum 1 =2 3 <} 5
s o04.3 15.7 2.0 126 5.24
X 5 1 5 14 3

Pump < Nd S o 10
s 31.4 1.05 1.05 2.1 10.5
a 19 1 1 FiR 22




VVe assume a Jdgamma distribution for the
failure rates:

0; ~ G (x, 3)

SO
P(e;) =
(0:) 2T (o)
Note that the @; are i.i.d. and are therefore

exchangeable (see lecture 1).

For this example we will assume that the
hyperparameter « is fixed and that the prior
for the hyperparameters 2 is inverse gamma

B ~ IG(v,9)

SO
6’)".5_6!."9

PO = mrr o




———— A — A —————— ———— — — — A —— ——

So we have a hierarchical model (see lecture

1).

The “hierarchy” of probability models that we
have here is

x; ~ Poisson (0;t;)
6; ~ Gamma(q,S)
g ~ Inverse Gamma (v,0)




T he joint posterior distribution is then dgiven
by
10 =%t (0;t;)"
g%
W(alz---zglﬂaﬂlﬂgj e H ( )
J=1
10 go—1_.—-96;/5
S
Bl ()

=1
.-5":"'.5_':_5;"{"3

T BFIE ()

-
fb“j.

We will use a Gibbs sampler to construct
a Markov <chain that will enable us to draw
samples from the joint posterior distribution
of 41,...,010 and 5.

To do this we need 1o determine full
conditional distributions of each of  the
unknown parameters...



T he full conditional of @; is proportional to the
Joint posterior distribution, so
10 9%t (g;¢;)"7

357
P9;16_;,8) < ]I (%))

J=1

-:-L»“j'!

—1 —:
y ﬁ E?:? e—9/8

57.5_'5;'"’.3

S BFIE ()

As we're thinking of this as a function of &; we
can divide through by all those terms which
don’t contain &;, hence

P(0;]10_;,8) o e Yligh
<@L/ P




SO, rearrangingd, we have

P(6; |0, 8) o e_&été—ﬁ'fﬁgfrl—cx—l

This i1s the dgeneral form for a Gamma
distribution. Hence the full conditional for 6,
IS diven by

1 —1
Htlﬂzmmc(ﬂ_l_xu(tl_l_g) )

Similarly, we find that the full conditional for
315 given by

B161....6010,x ~IG (v+ap, 3 6;+9)



So the Gibbs sampler updates é¢4,...,¢10 and
S in turn by drawing new values from their
conditional distributions.

Before starting we need to give values to the
fixed parameters «,~ and ¢. We choose to use

v = 0.1
o = 1.0
o = p?/(SE—p P>t t)

T he choice of ¢« comes from estimates of the
mean and variance of the &; calculated from
the data;

E (&;) a/3

ol
V() (a/B2) + (e/Bt;)

SZ2 =p~ 13 (p: — P)?

|



———— A — A —————— ———— — — — A —— ——

We need to choose starting values for
'91:---1'910 and ﬂ
In this case sensible starting points are

8 & p=ailt

80 & afp=ap/ Y0




——t—

D

=0

3=0
T

3

=00

2=
Mumb=r of Haraticns

180

a0




Mean value of sample of posterior distribution
for 2 is 0.4795 and median i1s 0.4588.

We can use these as our best point estimates
of £.

We can also use the MCMC sample to give a
confidence interval for 5.

To do this we order the sample from 3 and
pick out the 2.5 and 97.5 percentiles.

In this case the confidence interval would be
[0.2330,0.7830].




Convergence of MCMC

———— A — — e — — A —— A —— e — ——— A — — A — — - — ———
= Determing length of chain 1s hard

+ Initial set of samples discarded (burn-in)

+ Tests exist for stabilization, but unsatisfactory
# Trying to bound the mixing time

+ minimum # of steps for distribution of K to be close to

p(x)
measure closeness with the total variation norm A;(t), where
8alt) = KO (L2) - )l = 5 [ (KD (3la) - p(w)) d,
then the mixing time is

7.(e) =min {t : Ay (t') < eforallt' >t}.



Convergence of MCMC (cont d)

———— A — A — — A —— A ——— — - Ag(t) < }‘#

* Bound on total variation norm: 2 P(-‘fﬂ)

= Second eigenvalue can also be bounded

#® Implications: simple MCMC algorithms

+ (such as Metropolis)

+ Run 1n time polynomial in dim(state space)

+ Polynomial algorithm scenarios:
* Volume of convex body for large # dimensions
» Sampling from log-concave distributions
« Sampling from truncated multivariate Gaussians
« Sampling matches from a bipartite graph (stereo)



Perfect Sampling

———— e — A —— A —— A — — A — —— — A — —
= Algorithms guaranteed to produce an independent
sample from p(x)

* Current limited, computationally expensive

% Some work on general perfect samplers

+ perfect slice samplers




Adaptive MCMC: Motivation

=100
———— e — — A — — A —— A —— - — — ———

* We would like to stay in “good”
states for a long time, thus reduce JJ"U”

variance of proposal distribution

= Automate choosing of proposal
distribution such that (one of):
. . . . from Andrieu et al. An Introduction to MCMC
+ q1s closer to the target distribution for Machine Learning. Machine Learning, 2002.
+ We ensure a good acceptance rate
+ Minimize the variance of the estimator

= Too much adaptation 1s bad
+ Violates Markov property of K

* p(xX,.--X;.;) no longer becomes p(x;|X; ;)




Adaptive MCMC: Methods

——————— — A —— A —— A —— A — — A —— A — — A — — A — — i —
= Preserve Markov property by adapting only during
initial fixed # steps
+ Then use standard MCMC to ensure convergence
+ Gelfand and Sahu 1994

* Run several chains in parallel and use sampling-importance-
resampling to multiply kernels doing well, suppress others

* Monitor transition kernel and change components (like q) to
improve mixing

# Other methods allow continuous adaptation
+ Retaining Markov Property
+ Delayed rejection, Parallel chains, Regeneration
+ Inefficient




