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ABSTRACT

In this paper we introduce a new struciared channel impulse
response (CIR) estimation method for sparse multipath channels
where we demonstrate a robust way of restoring the pulse shape
into the composite CIR. We call this novel CIR estimation method
Time-Of-Arrival based Blended Least Squares (TOA-BLS} which
uses symbol rate sampled signals, and it is based on blending corre-
lation processing followed by TOA estimation in the frequency do-
main by the leasr squares based channel estimation. TOA estima-
tion in the frequency domain is accomplished by estimating the AR
model parameters by solving the forward and forward-backward
linear prediction equations in the least squares sense. Simulation
examples are drawn from the ATSC digital TV 8-VSB system [1].
The delay spread for digital TV systems can be as long as several
hundred times the symbol duration; however digital TV chammels
are sparse where there are only a few dominant multipaths.

1. OVERVIEW OF DATA TRANSMISSION MODEL

For the communications systems utilizing periodically transmitted
training sequence, least-squares (LS) based channel estimation or
the correlation based channel estimation algorithms have been the
most widely used two alternatives. Both methods use a stored copy
of the known transmitted training sequence at the receiver. The
properties and the length of the training sequence are generally dif-
ferent depending on the particular communication system’s stan-
dard specifications. In the sequel. although the examples follow-
ing the derivations of the blended channel estimator will be drawn
from the ATSC digital TV 8-VSB system [1], to the best of our
knowledge it could be applied with minor modifications to any dig-
ital communication system with linear modulation which employs
a training sequence. We should note that we are not using semi-
blind techniques (subspace based [6] or IQMLI5]). Since our main
focus is applying this technique in real time on the ATSC Digital
TV system which has 10.76 MHz symbol rate [ 1], we want as low
complexity as possible. Computing eigenvectors, or implementing
an iterative search scheme, may be prohibitive in real-time for the
very long channel lengths that one has to deal with in Digital TV,
which may span up to 500 symbols or so.

The baseband symbol rate sampled receiver pulse-matched fil-
ter output is given by
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yln] = y()jt=nr = Z Ich[n — k] +2[n], (1)
)

ik,
= { dp,
where I}, is the M-ary complex valued transmitted sequence, A C
C!, and {ax} € T denote the first N symbols within a frame
of length N' to indicate that they are the known training symbols;
v(t) = D{t) » g*(—t) denotes the (colored) noise process after the
pulse matched filter, with (t) being a zero-mean white Gaussian
noise process with spectral density NV, per real and imaginary part;
h(t) is the complex valued impulse response of the composite chan-
nel, including pulse shaping filter ¢(¢), the physical channel c(z),
and the receive filter g™ {—t), and is given by
L

M) = pt)sct)= Y eplt-m), ()

k=—-K

0<k<N-1
Ngn< N1, }GAE{O‘I"" out @

and p(t) = q(t) = ¢*(—¢) is the convolution of the transmit and
receive filters where g(t) has a finite support of [—T, /2, T, /2], and
the span of the transmit and receive filters, Ty, is integer multiple
of the symbol period, T'; that is Ty = N, T, Ny € Z%. {¢;} CT?
denote complex valued physical channel gains, and {7} denote
the multipath delays, or the Time-Of-Arrivals (TOA). It is assumed
that the time-variations of the channel is slow enough that ¢(£) can
be assumed to be a static inter-symbol interference (1SI) channel, at
least throughout the training period with the impulse response
L

ety = Z cxd{t — T} “4)

k==i

for 0 < t < NT, where N is the number of training symbols.
The summation limits K and L denote the number of maximum
anti-causal and cansal multi-path delays respectively. The multi-
path delays 7 are noi assumed to be at integer multiples of the
sampling period 7.

1.1. Review of Least-Squares Channel Estimation

Without loss of generality symbol rate sampled composite CIR k[n]
can be written as a finite dimensional vector h = [h[-Ng], -+,
R[0],- -, A[N.]]* where Na and N, denote the number of anti-
causal and the causal taps of the channel, respectively, and N, +
N + 1is the total memory of the channel. Based on Equation (1)
and assuming that N > Ng + Ng + 1, we can write the pulse
matched filter output corresponding only to the known training sym-
bols compactly as

y = Ah-+u, (5)
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where
y = [N pive + 1], gV -1 - N7, (6)
A = sagl} (M

where A is (N — N, — N.) x (N, + N, + 1) Toeplitz convolu-
tion matrix with first column [an,+n,, - ,an—_1]° and first row
[@n,4ng, - sao], and v = [N, [N + 1], ,w[N -1 —
N.]|". As long as the matrix A is a tall matrix and of full column
rank, thatis () N > 2{N, + N¢)+1, (ii) rank{A} = No+ N.+1
then the least squares solution which minimizes the objective func-
tion Jps(h) = {ly — Ah||? exists and unique, and is given by
hrs = (A#A)"?A%y. For a single antenna receiver the prob-
lems assaciated with the standard least squares based CIR estima-
tion for digital TV systems is summarized by Ozen, et al[7].

T{[QNC+NA, T 7aNA1}T7 [aNc+Na= e

2. OVERVIEW OF THE PROPOSED CIR ESTIMATOR

We will first briefly overview the initial channel estimation which
involves correlation, cleaning followed by TOA estimation in the
frequency domain. Once the TOA’s are property obtained we will
then present the Biended Least Squares (BLS) algorithm.

2.1. Initial Channel Estimation

Cross correlating the stored training sequence with the received
sequence, which is primarily done for frame synchronizaiion [3],
yields a raw (uncleaned) channel estimate

_ N-1

huln] = m;a:ylﬂnl, n=-Na 0, ,Ne (8)

No1
where rq[0] = Y ||ael|®. Equation (8) can be written as
5=0

- _ |
h, = “MA ¥, ]

where A = T{{ag, -+ ,an_1,0,- 0|7, (20,0, - ,0]} which
S —’ e —’

_ Noa+N: Ng+Ne
means that A is a (N + Ny + N.) % (Na + N + 1) Toeplitz
matrix with first column [ag, a1, - ,an=-1,0,--- ,0]7, and first
row [ag, 0, -, 0, and ¥ = {y[-N,],--- ,y[N + N, = 1}]7. In
order to get rid of the sidelobes of the aperiodic autocorrelation we
can simply invert the normalized autocorrelation matrix R, of the
training symbols, defined by

1

o
TE[U]A A o

R.. =

Then the cleaned channel estimate f. is obtained from
h. = R.lh, (n

however the channel estimate h, obtained by Equation (11) has
the contributions due to unknown symbols prior to and after the
training sequence, as well as the additive channel noise; only the
sidelobes due to aperiodic auto-correlation is removed.

If all the symbols involved in the correlation of Equation (9)
were perfectly known then the baseline noise in the estimation vec-
tor would have been due to finite correlation of known symbols
only. Then the cleaning algorithm would have cleaned this deter-
ministic noise perfectly and we wouldn’t have needed any thresh-
olding on the cleaned estimation vector. But we generally have

unknown symbols involved in the correlation in most of the prac-
tical applications. Previously Ozen et al(7] used thresholding in
the time domain to obtain the locations of the TOA's as well as to
decrease the contributions of the unknown symbols in the correla-
tion output. The correlations of Equation (9) ideally yield peaks
at {Df € Zt), fork = —K,---,—1,0, and at {D} € Z%)},
for k = 1,---, L. These delays are the sampling instants clos-
est to the locations of the actual physical channel multi-path TOAs
T, k = —-K,---,-1,0,1,.-- , L, within a symbol interval. If
we apply a uniform thresholding to the vector obtained by Equa-
tion (1) which is in the form of setting the estimated channel
taps to zero if they are below a certain preselected threshold for
n = ~Ng,---,—1,0,1,---, N, then in general we can choose
the tap location with largest magnitude and denote it as the cur-
sor (reference) path, and the TOAs prior to and after this refer-
ence TOA are denoted as pre- and post-cursor channel impulse
responses. However in this work we introduce the estimation of
TOA’s in the frequency domain via linear prediction.

2.2. TOA Estimation by Estimating the AR model parameters
via Forward and Forward-Backward Linear Prediction

Consider the CIR, A(t}, given by Equation (3). If we take the
Fourier transform of i(¢) we obtain

L
H{f) = C(HP(f) = ( 3 e eXp{—ﬂﬂan}) P(f). (1)

n=—K

Evaluating H(f) at Ng discrete frequency points, that is having
F = kN, and defining H{k] = H{k/Ng), Ck] = C(k/Ng),
and P[k] = P(k/Ng) we obtain

HIK| = CK] P[] = ( 3 o exp{—%}) Pk (13)

n=—~K

Since the pulse shape p(t) and its discrete Fourier transform P[k] is
known, we can convert the CIR estimation problem into a complex
sinusoid estimation problem by writing the CIR discrete frequency
response, for the frequencies k£ where P[k] is nonzero, by

Ol = HW/PH = 3 cnexp{—%} (14)

for all & such that P{k] # 0. Without loss of generality we assume
that Plk] # O for 0 < k < Ny where Ny = Ngp /2. The rest of
the sinusoid estimation problem can be accomplished by foltowing
a similar approach to the one outlined in [4, 8]: we can form the
Jorward linear predictor (FLP) of order N, of each sample C[k]
for Ny — 1 > k > Ny based on N, previous samples, and also
backward linear predictor (BLP) of order N, of each sample C[k]|
for Ny — N, —1 > k > O based on N, forward samples. For the
forward-backward linear prediction (FBLP) we minimize the sum
of the FLP and BLP errors in the least squares sense, denoted by
E,{b, and we write

g = g+ (15)
Nj—1 Ny 2

g o= > Cll=3 k-0, (16)
k=N, n=1
Ny-1 Np—1 2

& = > Ch-N~ > mClk~n| , am
k=N, n=0
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where £ and & denote the forward and backward LP errors re-

spectively; pf o n=1,--- . Ny, and pfl, n=0,--,Ny—1,denote
the forward and backward LP AR-model parameters respectively[8].
It is well known that p, = p{\,;_n forn = 0,1, -- ,Ng, and

pf,'\;p = pg = 1, which enables us to rewrite the FBLP error equa-

tion (15) in terms of the forward LP parameters {p7, } only[8]. Then
Equation (15) can be written as (and can be solved via any sta-
ble and numerically efficient algorithm such as Conjugate Gradi-
ents [2])

RERup = Ricp (18)
where p = [pf, -, ol 7.
Ru = [RL.RT], (9)
R; =T{[CIN, - 1],--- ,C[N; = 2]]",
[C[Np = 1],---, Cla]]} (20)

Ry =H{[C"[L],, C" [Ny — N]",
[C7INs = Np],---, C* [Ny = 1]}, 21

e = lef.eil, 22)

where ¢; = [C[Ng], -, CIN;=1)|", ep = [C7[0), -+, C"[Ny—
Np — 1], H{Ucol, Urow } denotes Hankel matrix with first col-

umn Vge and last row v,4.. FLP error of Equation (16) only can
be minimized by solving the set of equations

H o

Rf R_fp = Rf Cyr. (23)
Once the unknown AR model parameter vector, p, is obtained then
the complex sinusoids {exp{—&,\,';li}} which is also equivalent
to estimating the TOAs {}, is accomplished via thresholding the

discrete power spectrum

£f
Vim] = 2 - 4

Np
14 Z pzefjivrmk/Nﬂ
k=1

for 0 £ m < Np — 1, with Ng > Ny, and the thresholding is
accomplished by

set 7 = KkTNg/Np if VK] > ¢ 25)
where £’ can be set experimentally (o a value which is a few stan-
dard deviations above the average vatue of ¥[m).

We denote the estimated TOAs of the (estimated) channel by
{Dg} and { Df } corresponding to the pre-cursor (anti-cansal) TOA’s,
and the post-cursor (causal) TOA's respectively. It is assumed that
1< Df < < Df, and similarly 1 < D¢ < --- < D%.
The relationship between the actual TOA’s and the estimated TOAs
is given by D} = —round (%), for —K < k < 0, Df =
round (1]*:‘) for } < k < L. Itis also important to note that all
the preceding steps for the TOA estimator can only start with the
cleaned channel estimate h. of Equation (11).

3. OVERVIEW OF BLS ALGORITHM

The channel estimation is performed in two steps using symbol-
spaced received samples after the receiver pulse matched filter. In
the first step, the received samples are correlared with the stored

Table 1. Simulated channel delays in symbol periods, relative gains
(K = 2 pre-cursor ghosts, I = 6 posr ghosts)

Channel taps | Delay {7} | Gain {Jck{}
k=-2 -60.277 0.55
k=-1 -0.957 0.7263

Main k =0 0 1

k=1 3.55¢ 0.6457
k=2 15.250 0.9848
k=3 24.032 0.7456
k=4 29.165 0.8616
k=25 221.2345 0.6150
k=6 332.9810 0.4900

training sequence, and cleaning is applied, summarized by Equa-
tions (9,11} respectively; and the TOAs are determined as in Sec-
tion 2.2. The purpose of the second step is to incorporate the trans-
mitted pulse shape p(¢) into the channel impulse response. To do
this, we locate three copies of p(¢) shifted by one-half of a symbol
period around each multipath location and estimate complex scal-
ing factors using a medified least squares approach.

In order to recover the pulse shape p(t) into the CIR estimate,
for every multi-path we would like to approximate the shifted and
scaled copies of the pulse shape p(t) (shifted by 7 and scaled by
ck) by a linear combination of three pulse shape functions shifted
by half a symbol interval. More precisely

1
P> 1 plin+Df — 1)), K <k<0
=1
(26)
i
Y Ap((n-Df—5)T), 1<k<L

I==1

cep(nT—r¢) =

where {v{*), =K < k < L}__, C C'. By making this approxi-
mation we claim to efficiently recover the tails of the complex pulse
shape p{t) into the CIR estimate. To accomplish this approximation
we introduce three vectors p,., for k = —1, 0, 1, each containing T°
spaced samples of the complex pulse shape p(t) shifted by £77/2,
such that

kT kT kT
P = [p(-NoT= =) (=)o p(Ne T =0T, 27
for £ = —1,0, 1, and by concatenating these vectors side by side

we define a (2N, 4+ 1) x 3 matrix P by P = [p_1, po, p1}-

Then we form the matrix denoted by I" whose columns are
composed of the shifted vectors pi, where the shifts represent the
relative delays of the multi-paths; that is

P
O patps pa Ope
= P (28)
Opg¢ x3

003405 pa
P

where T is of dimension (D% + Df + 2N, +1) x 3(K + L+1},
and Q.. x» denotes an m by n zero matrix. Then the observation
vector y, and the convolution matrix, A, composed only of the
known training symbols are defined as in Equations (6, 7) respec-
tively. Since it was assumed that g(¢) spans N, symbol durations,
it implies that g[n] has N, + 1 sample points, which in turn im-
plies pjn] has 2N, + 1 samples. Hence N, = D + N, and
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Ne = D§ + N,. Defining ¥* = [y, 4§ 4] for ~K <
k < L,wedefiney = [yF), ... 4@ .o T a5 the un-
known vector of the coefficients with {’y,&k), n = -1,0,1;k =
—K,---,0,-- L}, of length 3(K + L + 1). Then the observa-
tion vector is given by

y = ATlv+v 29

where v js the noise vector. We can esti!mate the unknown coeffi-
cient vectorby 5,5 = (TTAYAD) T I'? A¥y. Once the vec-

10r ¥ g ; ¢ is obtained, the new channel estimate hgr s, can simply
be obtained by

beLs = T¥pis (30)
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Fig. 1. Parts (a-b) show the real and imaginary parts of the ac-
wal CIR; parts (¢c-d) show the cleaned CIR estimate, h.; parts {e-f)
show the TOA estimates with FLP of order N, = 256 at CG itera-
tions 4 and 5 respectively; parts (g-h) show the TOA estimates with
FBLP of order N, = 256 at CG iterations 4 and 5 respectively.

4. SIMULATIONS

We considered an 8-VSB [1] receiver with a single antenna. 8-VSB
system has a complex raised cosine pulse shape [1]. The CIR we
considered is given in Table 1. The phase angles of individual paths
for all the channels are taken te be arg{ci } = exp(—j2mf.7x), for
k=—K, - Lwhere fo = 2% and T,ym = 92.9nsec. The

ym

simulations were run at 28dB Signal-to-Noise-Ratio (SNR) mea-
sured at the input to the receive pulse matched filter, and it is calcu-
lated by

Eo O IHo(t) » a(t)}emrr %)
N , @1

where E; = 21 is the symbol energy for 8-VSB system, and No
is the variance of channel noise nu(kT). We set Ny, = 212,
Np =28 and e’ = m + 4o ui)y. that is we set the €’ to
4 standard deviations above the average of the power spectrum

SNR =

U(k]. Figure 2 shows the simulation results for the test channel
provided in Table 1. Part (a) shows the actuai CIR; part (b) shows
the CiR estimate, kgL g, based on BLS with estimated TOAs; part
(¢) shows the CIR estimate, hprs, based on BLS with perfectly
known TOAs. As can be seen in Figure 2 either the 4th or the
5th iterations of the CG algorithm can be taken as the solutions
to the FBLP and FLP equations (18,23} to compute the spectrum
U [k]. Finally we have observed a very promising performance by
using estimated TOA parameters for the BLS algorithm to compute
the CIR estimate, where the normalized least-squares etror is very
close to that of the BLS when the true TOAs are used.

TOA-BLS CIR stimats via FBLP, at SNR=2808 Normalized LS anor =5 93096 -006
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Fig. 2. Parts (a-b) show the real and imaginary parts of the CIR es-
timate, Agrs, based on BLS with estimated TOAs via FBLP; parts
{c-d) show the CIR estimate based on BLS with perfectly known
TOAs.
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