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Abstract—We provide an iterative and a non-iterative channel applied with minor modifications to any digital communication
impulse response (CIR) estimation algorithm for communication system with linear modulation which employs a periodically
systems which utilize a periodically transmitted training sequence transmitted training sequence. The novel algorithm presented

within a continuous stream of information symbols. The itera- . th Lis t ted for th t that desired t
tive procedure calculates the (semi-blind)Best Linear Unbiased In the sequel Is targeted Tor the systems that are desired to

Estimate (BLUE) of the CIR. The non-iterative version is an Work with channels having long delay spredds in particular
approximation to the BLUE CIR estimate, achieving aimost sim- we consider the case whefeVT + 1)/2 < L; < NT,
ilar performance, with much lower complexity. We first provide  where NT is the duration of the available training sequence.
a formulation of the received data and correlation processing g, instance the 8-VSB digital TV system has 728 training
with the adjacent symbol correlation taken into account, and )
we then present the connections of the correlation based CIR symbols, whereas the delays spreads of the terrestrial channels
estimation scheme to the ordinary least squares CIR estimation, have been observed to be at least 400-500 symbols long [6],
and the BLUE CIR estimation. Simulation results are provided to  [7], [8]. In addition to the iterative BLUE algorithm we
demonstrate the performance of the novel algorithms for 8-VSB provide approximate BLUE algorithm which can be used as
ATSC Digital TV system. an initializer to the BLUE iterations, or as a stand-alone
alternative approach that produces results of nearly the same
quality as the results produced by the BLUE algorithm while at
For the communications systems utilizing a periodicallthe same time requiring much less computational complexity
transmitted training sequendeast-squaregLS) based chan- (i.e., requiring about the same number of multiplications
nel estimation or thecorrelation based channel estimationnecessary to implement ordinary least squares) and having
algorithms have been the most widely used two alternstorage requirements similar to that of ordinary least squares.
tives [1]. Both methods use a stored copy of the known Our novel CIR estimation algorithms can be considered as
transmitted training sequence at the receiver. The propertisni-blindtechniques since these methods take advantage of
and the length of the training sequence are generally differéhe statistics of the data [3], [8].
depending on the particular communication system'’s standqz{d
specifications. However the accuracy of most channel esti-
mation schemes is degraded due to Haseline noisg¢erm
which occurs due to the correlation of the stored copy of y = Ax+v (1)
the training sequence with the unknown symbols adjacent t

transmitted training sequence, as well as the additive chanWZ]ere y is the observation (or response) vectat, is the

noise [1], [10]. In the sequel, we provide (semi-blinggst regression (or design) matrix; is the vector of unknown

Linear Unbiased EstimatBLUE) and approximate BLUE (a- parameters to be estimated, andis the observation noise
BLUE) channel estimators for communication systems USil’gér measurement error) vector. Assuming that it is known that

I. INTRODUCTION

Overview of Generalized Least Squares
Consider the linear model

a periodically transmitted training sequence. Although tli e random noise vector is zero mean, and is correlated,

i f— = l H 2 1
examples following the derivations of the BLUE and the a{ atis $0\'{;} g Kt.” _f 2Et{m/f }tﬁ U"I’dV\:e Se{mg the
BLUE channel estimators will be drawn from the ATSC digital generalized) objective function for the model of (1) by
TV 8-VSB system [2], to the best of our knowledge it could be Jars(x) = (y—Ax)P K '(y— Az). (2)



The least squares estimate that minimizes Equation (2) is from the known training symbols (which includes the adjacent
random data as well) can be written as
Ba. = (AKSA)ATK'y, @ )

The estimator of (3) is called tHeest linear unbiased estimate YinaveN-y = (A+DIRF vy Ny

(BLUE) [9] among alllinear unbiased estimators if the noise = Ah+Dh+Qniy, p,:NeN s, {7)

covariance matrix iknownto be Co{r} = K. If the noise = Ah+Hd+Qn_y, 1, .NN-141,(8)

v is knownto beGaussiarwith zero mean and with covarianceWh ere

matrix K, that is if it is known thatv ~ A (0, K,), then

the estimator of (3) is called thminimum variance unbiased

estimator(MVUE) amongall unbiased estimators (not only A = 7 { [ag, - ,an_1,0,---,0]",[ag,0,---,0] p (9)
N—— N——

linear). Ny +N, Na+N,

Il. OVERVIEW OF DATA TRANSMISSIONMODEL D = T{[O, -, 0, dN, cet 7dNC+Na+N—1]T7
——

The baseband symbol rate sampled receiver pulse-matched N
filter output is given by 0,dy, - ,d NN} (10)

= - _ where A is a Toeplitz matrix of dimensio(N + N, + N.) x
y[n] Y(O)|t=nT Zlkh[n k] + v[n] (Na+N,+1) with first columnlag, ar, - ,an_1,0.- , 0],
and first row[ap, 0, - - - , 0], and D is a Toeplitz matrix which
includes the adjacent unknown symbols, prior to and after the
training sequence. The data sequeface, - - - ,d_n_n,] is the
where unknown information symbols transmitted at the end of the
ap, 0<kE<N-1 . frame prior to the current frame being transmitt€gl.is of
I’“:{ dy, N<n<N-—I, }EA:{O‘“ soamt ) gimension(N + Ny + N.) x (N + Na + N, + N,) and is

k
D Ikhln =k + > nlklg"[=n+k, (4)
k k

. . given by
is the M-ary complex valued transmitted sequendec C!,
and{a;} € C* denote the firstV symbols within aframe of g 0 - 0
length N’ to indicate that they are the known training symbols; |0 g’ - 0 1
vin] = n[n] * ¢*[-n] denotes the complex (colored) noise Q= : - (11)
process after the (pulse) matched filter, wjfh] being a zero- 0 O L q.T
mean white Gaussian noise process with variaffpeer real
and imaginary part; and .
L q = [Q[Jqu]v 7q[0]7 7Q[*Lq“
h(t) =q(t) xc(t) xq"(—t) = Y cxplt — 7) is the receiver pulse matched filter, and
k=—K

is th lex valued impul fth ite chans. il (12)
is the complex valued impulse response of the composite chan-. T
nel, including pulse shaping transmit filte(t), the physical - WNC]" w5 hl0], - A= = Th, (13)
channel impulse respong€t), and the receive filteg*(—t), 0 - 0 1
andp(t) = q(t)=q*(—t) is the convolution of the transmit and e 10 (14)
receive filters where(t) has a finite support -1, /2, T, /2], - Do :
and the span of the transmit and receive filtéfs, is an 1 0 --- 0
even multiple of the symbol period; that is 7, = N,T, - (NatNeH) X (NatNet)
N, =2L, € Z*. {c;;} CC' denote complex valued physical h o --- 0
channel gains, andr,} denote the multipath delays, or the o RY ... 0
Time-Of-Arrivals (TOA). It is assumed that the time-variations H = S (15)
of the channel is slow enough thaft) can be assumed to : : B
be a static inter—gymbol interfergnce (ISI) channel, at least L0 0 R NN X (N2t
throughout the training period. Without loss of generality, the - ) - .
symbol rate sampled composite CIR], can be written as @hdd = Sd, or equivalentlyd = S d, where
a finite dimensional vector d = [don N, da, Oy, dy, ) dN+NC+Na71]T(16)

h = [h[_NaL"' 7h[_1]7h[0]7h[1]"" ah[NCHT (6) d = [d—N—Na,a"' yd_1,dn, -+ 7dN+NC+Na—1]T (17)
whereN, and N, denote the number of anti-causal and causalS = Ingeve  Ovoinoxn Oa+no) (18)

taps of the channel, respectively, ahg = (N, + N.+1)T is Oatne) ONutNo v INatN.

the delay spread of the channel (including the pulse tails). Théere S is (2(N.+ N,)) x (N +2(N, + N.)) dimensional
pulse matched filter output which includa the contributions selectionmatrix which retains the random data, eliminates



the N zeros in the middle of the vectai. whereh is the approximation to the exact BLUE CIR estimate after each step,
time reversed version df (re-ordering is accomplished by theis provided in Algorithm 1. In the intermediate steps noise
permutation matrixJ)_, and H is pf _dimengion(N + N, + variance is estimated by, = m DN, NN —

N.) x (2(]_\fc+Na))_ with a “hole” inside which is created by yJNC:N—Na,]”Z’ where&, = [lq||*> and giy..x_n.) = Ahun,

the selection matrixs.

A =T {[anqn,, - ana]", [anqn,, - aol}-

I11. OVERVIEW OF THE PROPOSEDCIR ESTIMATOR A. Approximate BLUE CIR estimation

For comparison purposes we first provide the well known An alternative approach may be used to produce results
correlat!on and ordinary Iegst squares based estimato_rs, Wrtﬁ”?]early the same quality as the results produced by the
correlations based estimation IS denoteg (_the,SUbSC”pt“ algorithm described in Algorithm 1 while at the same time
stands for thaincleanedCIR estimate) and is given by requiring much less computational complexity (i.e., requiring
about the same number of multiplications necessary to imple-
ment Equation (20)) and having storage requirements similar
N1 to that of Equation (20). According to this alternative, the
with 7,[0] = 3 |lax||?, and the ordinary least squares CIRnitial least squares estimation error can be reduced by seeking

~ 1 "

h, = TQ[O}A y[fNa:NJrNCfl]? (19)

_ k=0 . _ an approximation in which it is assumed that the baseband
estimate is denoted by (the subscript. stands for the representation of the physical channg) is a distortion-free
cleanedCIR estimate) and is given by (no multipath) channel; that is(t) = () which implies

he = (AHA)_lAHy[—Na:N+NC—1]7 (20) h(t) = p(t)*c(t) = p(t). (25)

where “cleaning” is accomplished by removing the knowfthys we can assume that our finite length channel impulse

sidelobes of the aperiodic correlation operation which j&sponse vector can be (initially) approximated by
accomplished in (19).

We can denote the two terms on the right side of Equa-h = [0,--+ .0, pE-Ng], - ,p[0], -, p[Ng], 0.+ 0] (26)
. —— ——
tion (8) byv = Hd + Qn_y,_r,:N+N.-14L,]- HENCE WE Na—Ng raised cosine pulse Ne—=Nq

rewrite (8) as . _ _
with the assumptions ofN, > N, and N, > N,, that is
Y-N,N+N.—1] = Ah+wo. (21)  the tail span of the composite pulse shape is well confined to

By noting the statistical independence of the random vecto%thln t.he "?‘Ssume“ delay spread [e.fN“T’ .NcT]' Thep the
proximation of (26) can be substituted into Equations (12-

d andn, and also noting that both vectors are zero mean, thl ) to yield an initial (approximate) channel convolution
covariance matrixK, of v is given b 2 o = ~ ~

varl K v 1S gV 4 matrix H and is given byH = HS” where H is formed
@HHH +J727QQH, (22) as in Equation (15) withh = Jh. We can also assume a
2 reasonable received Signal-to-NoiS&NR) ratio measured at
where&, is the energy of the transmitted information symbolghe input to the matched filter which is given by
and equals t@1 if the symbols{d;} are chosen from the set < 2 ¢ 9
{41, 43,+5, £7}. For the model of (21) the generalized least ~ §NR = ¢ I{c(2) * qg(tmt:”TH _ H;IH vY)
squares objective function to be minimized is Tn Ty

COV{'I)} =K, = %E{va} —

H For instance we can assume an approxing¥& of 20dB
Jasth) = (y[—Na:N+NC—1] _Ah> K, (y[—NQ:N+NC—1] _Ah) (23)  yielding an initial noise variance of

Eallal®
2 = ) 28
K 100 (28)
A Then combiningH and &,2] we can pre-calculate the initial
hg = (A"K,'A)"A"K, 'y _y..nin. - (24) approximate covariance matrix where the covariance matrix

of the approximate channel is given b
The problem with Equation (24) is that the channel estimate PP g y

hx is based on the covariance matfik,, which is a function Ko (A) = ‘e,aa"+ 72QQ™, 29)
of the true channel impulse response veckoras well as 2

the channel noise variance%. In actual applications the which further leads to the initial channel estimate of
BLUE channel estimate of Equation (24) can not be exactly e S

obtained. Hence we need @erative technique to calculate i = (A (K (H)] A) AT K(H)[" ypn, . niv.- (30)
generalized least squares estimate of (24) where every iteration
produces an updated estimate of the covariance matrix as
well as the noise variance. Without going into the detail§quation (30) is the resulting a-BLUE CIR estimate.
a simplified version of the iterations, which yield a closefhe key advantage of the a-BLUE method is that

Then the generalized least-squares solution to the model of
Equation (21) which minimizes the objective function of
Jers(y) is given by

o

pre-computed and stored



- - -1 - - - . .

the matrix (A”[K,(H)|"'A) A" [K,(H)]™' is con- the central limit theorem[4]. The baseline noise veddnas
structed based on the inifial assumptions that the rgovariance matrixk, = Cow{£}

ceiver is expected to operate, and can fe-computed &y = e "

and stored in the receiver. By using the pre-stored matrix K¢=B(HH +0,QQ")B" = BK,B (34)

(AH[ v(H)]_1A> A"[K,(H)]~! as in Equation (30) where K, is given in (22), and we make the approximation
we obtain a CIR estimate with much lower computational 5
complexity than the BLUE algorithm. We also note that a¢ ~ N(0, B( Qd
BLUE CIR estimate can be used either as a stand-alone CIR
estimator, or as an initial estimate which can be used by tR¥ invoking the central limit theorem, whed8 takes one of
BLUE algorithm. the appropriate forms as displayed in Equation (33).

We also provide the probability distribution ¢§||> where

Algorithm 1 Iterative Algorithm to obtain a CIR estimate viaSubscript: denotes théth element of the baseline noise vector

HH"+52QQ")B") = N(0, BK,B") (35)

Generalized Least-Squares &= [&,... &N, +n.+1]". Based on (35) we can show that
[1] Get an initial CIR estimate using one of (19), (20), or (30)&@ has a Gaussian marginal distribution with zero mean and
and denote it bya[0]; variance[4]

S . D)
[2] Threshold the initial CIR estimate, and denote |tfog/ [0] 1 T H
[3] Estimate the noise variane€ (0] O—Ek = §E{€k§k} =1, BK,B" 1y (36)
[4] .
for k=1,..., Nitr do that is¢, = 1/ B(Hd + QN_N,-L,N+N.—1+L,))» and
[4-a] Calculate the inverse gf the (es- . I
timated) covariance matrix K, [k] = & ~N(0,1; BK,B"1;), (37)
~ ~ — —1 S—
[ HE ™ k=) HT R 1)+ 0% k- 11QQ" ] o2

[4-b] hk k] = (AHKvlUf]A)*lAIva1[k]y[7N{,:N+N6711? where B takes one of the appropriate forms as displayed in
[4- C] Threshold the CIR estimaté k], and denote it by Equation (33), and; = [0,...,0,1,0,...,0]” is the vector
A ) k—1
[4-d] Estimate the noise variance, [k]. of zeros of appropriate dimension with a 1 at #tk position.
end for Now we state an important fact about the probability dis-
tribution of the square-norm of the complex Gaussian random
variables [11]. Lett = &, + j§, be a complex valued random
B. Analysis of Baseline Noise and CFAR Thresholding  variable, with statistically independent real and imaginary
The channel estimateB, or & have contributions due Parsé, and¢,. Given that is Gaussian with) mean and
to unknown symbols prior to and after the training sequend@rianceo = o7 = of = ;E{£¢*}, the random variable
which are elements of the vectet, as well as the additive defined byZ = [ = €2 + + &7 is exponentially distributed,
channel noise. These contributions due to unknown symb@Rd its density is given by
and channel noise is calldmhseline noiseand we can give =
pz(z) = {

. . . . . 1 o2
an expression which summarizes the baseline noise for two sz€ T8, >0
different estimators of Equations (20), and (30). The general
channel estimate can be written in the form

217£

0, r < 0.

Although it is apparent that the real and imaginary parts of
h=h+&=h+ B(Hd + Qn[fNaqu:NJrchlJqu]) (31) the baseline nois€;. are not statistically independent, for the
sake of obtaining a simple thresholding rule and for the special
where the baseline noise vectiis defined by case of Digital TV system the correlation can be shown to be
small, we will proceed as if the real and the imaginary parts
13 B (Hd+ Qn[—Naqu:N+NC71+Lq]) (32)  of ¢, are uncorrelated. With this simplified assumptig ||
is an exponentially distributed random variable with parameter
and the matrixB takes one of the two following dn‘ferent2 2
forms depending on the estimator used:

(38)

, and the density function is

T

-1 R 1 252
(AHA) 14H7 for hc p”gk‘lz(’r) = Qng € [ , T > 0 (39)

S T I CX)) / 0, r < 0.
(AH[Kv(H)]—1A> AT (K (H)|1, for hy
Whereagk is defined by Equation (36).
Although we can derive the exact probability distribution There is one crucial detail for Algorithm 1 that has not
of the baseline noise term, we can alternatively make theen discussed until this point. Right after obtaining a chan-
assumption ohormality (having Gaussian distribution) of thenel estimate, prior to using that channel estimate for noise

baseline noise. This assumption can be asserted by invokixaagiance,ag, calculation and prior to building the channel

B =



convolution matrixH, the baseline noise has to be cleaneBased on the rule of (45) the false alarm rate, denoteglshy
from the channel estimate. This cleaning can be achieved isagiven by
thresholding. Previously we have used a fixed thresholding o
algorithm [6] to get rid of the baseline noise. We have observed
that there can be significant performance loss if a fixed
thresholding is applied at every iteration. This performance - ck
loss is inevitable due to getting rid of significant amount of — e % (46)
pulse tails embedded in the channel impulse response while
getting rid of the baseline noise. To overcome this problem w@r the given level of false alarm probability- 4 the threshold
propose constant false alarmate (CFAR) based thresholding,level ¢, is given by
and it is based on determining a threshold based on the 9
approximate statistical distribution of the baseline noise which e = —20¢ In(pra) (47)
is already provided in (37). whereo? is given by (36).
Recall that thekth tap of the channel estimate vector can Although we end up with a very simple expression for
be expressed in the form the threshold of Equation (47), which should be applied to
R the channel estimate as in (45), we still have the problem
hg = hr + 1, B (Hd+ Q'r’[fNa—Lq:N+chl+Lq])7 (40)  of not knowing the true covariance matrig (&, HH™ +
p 2QQ )BH and thekth diagonal element which we have
k

denoted bya£ We can only have an esuma&égk available
and¢, has a Gaussian distribution with zero mean and varianie be used in Equation (47). Thus it is_natural to see some
a? =1'BK +B™1, where B takes one of the appropriateperformance loss due to using the estlm:a?tg in place of the
forms as displayed in Equation (33), and the random vatiue variance as will be shown in the simulations. Indeed the
able [|¢]|? is assumed to have exponential distribution witthresholding step is going to be incorporated into the iterations
parameteaagk. of the channel estimation with covariance matrix updated
The problem of deciding whether tHgh tap estimateh;,,  at every iteration. Once the covariance matrix is updated at

is a zero tap or not can be formulated as a simple hypothegiery iteration we would have a new, and presumably better,

- . 1 p
Pr{||hx||* > ex|Hy is true } :/ e & dr
2U§k

testing problem. That is we consider thresholds;, since we will get a better estimate’,, at every
) iteration.
Hy : hy =&, (41) Note that the stef4-b] of the Algorithm is the main
Hy : hy = hy + & (42) step to compute the channel estimate, and is repeated here

for convenience (the square bracketed indek denote the
where underf, the hypothesis is that theth channel tap is iteration step):

actually zero and we are observing only baseline noise, apd . . .

under H; the hypothesis is that the channel tap is non-zerby[n] = (AHK,J [n]A) APK, Py NN, —1]> (48)
and we are observing (non-zero) channel tap plus the baseline

noise. We have shown that the probability distributions of thﬁhereK [n] = [%H(ﬁ(th) [n — 1])HH(it(th) n— 1)) +

kth channel tap under each hypothesis is given by 2,[n—1]QQ") ! is the inverse of the estimated covariance

He + e o N(0. 02 43 matrlx of v, and H(h(th) [n — 1]) is the convolution matrix
0 A k ( 05’“2) (43) (with a “hole” inside) constructed as in Equations (12-18) from
Hy : hy~N(hg,0p,). (44) Rty [n — 1] which is the thresholded CIR vector estimated at

the previous iteration. The baseline noise for the main channel

After defining (43) and (44) we can come up with differenéstlmatlon step of Equation (48) is

decision rules on how to threshold the channel estinigte
however we choose to pursue the constant false alarm rate ¢ = B(Hd+Qn_n,_r,.n+N.—141,), (49)
(CFAR) based thresholding. False alarm probability based . .

decision rule is chosen so that the resulting threshold rule degisere B = (A" K, [n]A)~'A” K, [n]. Thus the covari-
not require any a priori knowledge of the distribution of theance matrix of the baseline noise at thith iteration step,
hypothesisH,, it is solely based orf,. False alarm rate is denoted byK¢[n], is given by

the probability of choosingi; when H|, is true. Our decision

; . &
rule will be in the form of K¢n] = B( dHHH +02QQ™B".  (50)
sethth) _{ 0, if k]| < e (45) Since we can only use an estimate of the true covariance
k hy, otherwise. matrix K, (in the middle of Equation (50)), after the sim-
plifications we get
LIn statistical inference literature false alarm (rate) is referred to as the Type Py 1

I error (probability). K¢n] = (A"K, [n]A)™!, (51)



TABLE |

Real part of the CIR Correlation CIR Estimate: h =Ay/r_

SIMULATED CHANNEL DELAYS IN SYMBOL PERIODS, RELATIVE
GAINS. L = —1, K =6,
La =~ (1+ 3334 2N,)T = 453T ~ 444SEC, N, = 60.

0.4
0.2

0.6
0.4

Normalized LS error =0.0029937

L

@ o
Channel taps | Delay {7} | Gain {]cx|} -0.2
k=-1 -0.957 0.7263 -0.4
Mai — 0 100 200 300,400 0 100 200 300 400
aink =0 0 1 Ordinary LS CIR Estimate: h =(A'A) Ay CIR Estimate with approximate BLUE
k=1 3.551 0.6457
= 06 06
Z : g ;iégg g?igg 0.4 Normalized LS error =0.0010126 0.4 Normalized LS error =0.00018976
k=4 29.165 0.8616 o o2 \ |
k=5 221.2345 0.6150 0 @o rommt
k=06 332.9810 0.4900 02 02

-0.4

-0.4

1t

0 100 200 300 400
iteration BLUE, starting w/ thresholded a-BLUE

0 100 200 300 400
Ideal BLUE ( known K, ), serves as "bound"

which is an estimate of the true covariance matrix¢obf gi
Equation (49) if we could have used the true covariance matrix
K, in Equation (48) to begin with. Then the CFAR base(_a_g
threshold is given

-0.4

Normalized LS error =6.9268e-005)

|

: Normalized LS error =2.7353e-005)

er = —20%,In(pra) (52) Fig.

A,
r
0 100 200 300 400 0 100 200 300 400

1. Part (a) shows the real part of the actual CIR; part (b) shows the

correlation based CIR estimate of Equation (£9); part (c) shows the LS
based CIR estimate of Equation (2B).; part (d) shows the approximate
BLUE CIR estimate of Equation (30) with an assumed SNR of 20dB; part (e)
show the BLUE based CIR estimate of Algorithm 1, after the first iteration,
FLK[l]; part (f) shows the ideal BLUE case for which the true covariance
matrix K, is known, which provides a bound for the rest of the estimators.

—~ -~ —1
whereo?e, = 17 K¢[n]1;, = 17 (A" K, [n]A)"'1; .

IV. SIMULATIONS

We considered an 8-VSB [2] receiver with a single antenna.
8-VSB system has a complex raised cosine pulse shape [2].
The CIR we considered is given in Table I. The phase
angles of individual paths for all the channels are taken
to be arg{cy} = exp(—j2nferx), k = —1,---,6 where
fe % and T' = 92.9nsec. The simulations were run
at 28dB Signal-to-Noise-Ratio (SNR) measured at the input
to the receive pulse matched filter, and it is calculated tfi/
SNR = &dlfe®@=a®lmrrll®  Figyre 1 shows the simulation ]

o2 '

results for the test channel provided in Table I. Part (a) shows
the actual CIR; part (b) shows the correlation based C
estimate, of Equation (19%,; part (c) shows the ordinary
LS based CIR estimate of Equation (2B); part (d) shows
the approximate BLUE CIR estimate of Equation (30) with a
assumed SNR of 20dB; part (e) shows the BLUE based CF%
estimate of Algorithm 1, after the first iteratioh [1], where

we used CFAR based thresholding withr 4 = 10~°; part

(f) shows the ideal BLUE case for which the true covariange]
matrix K, is known. Part (f) provides a bound for the rest
of the BLUE algorithm. We note superior performance of thﬁ
BLUE algorithm even after the first iteration, as compared to
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