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Abstract— We provide an iterative and a non-iterative channel
impulse response (CIR) estimation algorithm for communication
systems which utilize a periodically transmitted training sequence
within a continuous stream of information symbols. The itera-
tive procedure calculates the (semi-blind)Best Linear Unbiased
Estimate (BLUE) of the CIR. The non-iterative version is an
approximation to the BLUE CIR estimate, achieving almost sim-
ilar performance, with much lower complexity. We first provide
a formulation of the received data and correlation processing
with the adjacent symbol correlation taken into account, and
we then present the connections of the correlation based CIR
estimation scheme to the ordinary least squares CIR estimation,
and the BLUE CIR estimation. Simulation results are provided to
demonstrate the performance of the novel algorithms for 8-VSB
ATSC Digital TV system.

I. I NTRODUCTION

For the communications systems utilizing a periodically
transmitted training sequence,least-squares(LS) based chan-
nel estimation or thecorrelation based channel estimation
algorithms have been the most widely used two alterna-
tives [1]. Both methods use a stored copy of the known
transmitted training sequence at the receiver. The properties
and the length of the training sequence are generally different
depending on the particular communication system’s standard
specifications. However the accuracy of most channel esti-
mation schemes is degraded due to thebaseline noiseterm
which occurs due to the correlation of the stored copy of
the training sequence with the unknown symbols adjacent to
transmitted training sequence, as well as the additive channel
noise [1], [10]. In the sequel, we provide (semi-blind)Best
Linear Unbiased Estimate(BLUE) and approximate BLUE (a-
BLUE) channel estimators for communication systems using
a periodically transmitted training sequence. Although the
examples following the derivations of the BLUE and the a-
BLUE channel estimators will be drawn from the ATSC digital
TV 8-VSB system [2], to the best of our knowledge it could be

applied with minor modifications to any digital communication
system with linear modulation which employs a periodically
transmitted training sequence. The novel algorithm presented
in the sequel is targeted for the systems that are desired to
work with channels having long delay spreadsLd; in particular
we consider the case where(NT + 1)/2 < Ld < NT ,
whereNT is the duration of the available training sequence.
For instance the 8-VSB digital TV system has 728 training
symbols, whereas the delays spreads of the terrestrial channels
have been observed to be at least 400-500 symbols long [6],
[7], [8]. In addition to the iterative BLUE algorithm we
provide approximate BLUE algorithm which can be used as
an initializer to the BLUE iterations, or as a stand-alone
alternative approach that produces results of nearly the same
quality as the results produced by the BLUE algorithm while at
the same time requiring much less computational complexity
(i.e., requiring about the same number of multiplications
necessary to implement ordinary least squares) and having
storage requirements similar to that of ordinary least squares.

Our novel CIR estimation algorithms can be considered as
semi-blindtechniques since these methods take advantage of
the statistics of the data [3], [8].

A. Overview of Generalized Least Squares

Consider the linear model

y = Ax + ν (1)

where y is the observation (or response) vector,A is the
regression (or design) matrix,x is the vector of unknown
parameters to be estimated, andν is the observation noise
(or measurement error) vector. Assuming that it is known that
the random noise vectorν is zero mean, and is correlated,
that is Cov{ν} = Kν ≡ 1

2E{ννH} 6= σ2
νI, we define the

(generalized) objective function for the model of (1) by

JGLS(x) = (y −Ax)HK−1
ν (y −Ax). (2)



The least squares estimate that minimizes Equation (2) is

x̂gls = (AHK−1
ν A)−1AHK−1

ν y, (3)

The estimator of (3) is called thebest linear unbiased estimate
(BLUE) [9] among alllinear unbiased estimators if the noise
covariance matrix isknownto be Cov{ν} = Kν . If the noise
ν is knownto beGaussianwith zero mean and with covariance
matrix Kν , that is if it is known thatν ∼ N (0, Kν), then
the estimator of (3) is called theminimum variance unbiased
estimator(MVUE) among all unbiased estimators (not only
linear).

II. OVERVIEW OF DATA TRANSMISSIONMODEL

The baseband symbol rate sampled receiver pulse-matched
filter output is given by

y[n] ≡ y(t)|t=nT =
∑

k

Ikh[n− k] + ν[n]

=
∑

k

Ikh[n− k] +
∑

k

η[k]q∗[−n + k], (4)

where

Ik =
{

ak, 0 ≤ k ≤ N − 1
dk, N ≤ n ≤ N ′−1,

}
∈A≡{α1,· · · , αM} (5)

is the M -ary complex valued transmitted sequence,A ⊂C1,
and{ak} ∈ C1 denote the firstN symbols within aframeof
lengthN ′ to indicate that they are the known training symbols;
ν[n] = η[n] ∗ q∗[−n] denotes the complex (colored) noise
process after the (pulse) matched filter, withη[n] being a zero-
mean white Gaussian noise process with varianceσ2

η per real
and imaginary part;

h(t) = q(t) ∗ c(t) ∗ q∗(−t) =
L∑

k=−K

ckp(t− τk)

is the complex valued impulse response of the composite chan-
nel, including pulse shaping transmit filterq(t), the physical
channel impulse responsec(t), and the receive filterq∗(−t),
andp(t) = q(t)∗q∗(−t) is the convolution of the transmit and
receive filters whereq(t) has a finite support of[−Tq/2, Tq/2],
and the span of the transmit and receive filters,Tq, is an
even multiple of the symbol period,T ; that is Tq = NqT ,
Nq = 2Lq ∈ Z+. {ck} ⊂C1 denote complex valued physical
channel gains, and{τk} denote the multipath delays, or the
Time-Of-Arrivals (TOA). It is assumed that the time-variations
of the channel is slow enough thatc(t) can be assumed to
be a static inter-symbol interference (ISI) channel, at least
throughout the training period. Without loss of generality, the
symbol rate sampled composite CIR,h[n], can be written as
a finite dimensional vector

h = [h[−Na], · · · , h[−1], h[0], h[1], · · · , h[Nc]]T (6)

whereNa andNc denote the number of anti-causal and causal
taps of the channel, respectively, andLd = (Na +Nc +1)T is
the delay spread of the channel (including the pulse tails). The
pulse matched filter output which includesall the contributions

from the known training symbols (which includes the adjacent
random data as well) can be written as

y[−Na:N+Nc−1] = (A + D)h + ν [−Na:N+Nc−1]

= Ah+Dh+Qη[−Na−Lq:N+Nc−1+Lq ],(7)

= Ah+Hd+Qη[−Na−Lq :N+Nc−1+Lq ],(8)

where

A = T





[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]





,(9)

D = T {[0, · · · , 0︸ ︷︷ ︸
N

, dN , · · · , dNc+Na+N−1]T ,

[0, d−1, · · · , d−Nc−Na ]}, (10)

whereA is a Toeplitz matrix of dimension(N + Na + Nc)×
(Na+Nc+1) with first column[a0, a1, · · · , aN−1, 0, · · · , 0]T ,
and first row[a0, 0, · · · , 0], andD is a Toeplitz matrix which
includes the adjacent unknown symbols, prior to and after the
training sequence. The data sequence[d−1, · · · , d−Nc−Na ] is the
unknown information symbols transmitted at the end of the
frame prior to the current frame being transmitted.Q is of
dimension(N + Na + Nc) × (N + Na + Nc + Nq) and is
given by

Q =




qT 0 · · · 0
0 qT · · · 0
...

...
.. .

...
0 0 · · · qT


 (11)

and
q = [q[+Lq], · · · , q[0], · · · , q[−Lq]]T

is the receiver pulse matched filter, and

H = HST , (12)

h̄ = [h[Nc],· · · , h[0],· · · , h[−Na]]T = Jh, (13)

J =




0 · · · 0 1
0 · · · 1 0
...

...
...

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(14)

H =




h̄
T 0 · · · 0
0 h̄

T · · · 0
...

...
. . .

...

0 0 · · · h̄
T




(N+Nc+Na)×(N+2(Na+Nc))

(15)

andd = Sd̃, or equivalentlyd̃ = ST d, where

d̃ = [d−Nc−Na , · · ·, d−1,01×N , dN , · · ·, dN+Nc+Na−1]T (16)

d = [d−N−Na , · · · , d−1, dN , · · · , dN+Nc+Na−1]T (17)

S =
[

INa+Nc 0(Na+Nc)×N 0(Na+Nc)

0(Na+Nc) 0(Na+Nc)×N INa+Nc

]
(18)

where S is (2(Nc +Na)) × (N +2(Na +Nc)) dimensional
selectionmatrix which retains the random data, eliminates



the N zeros in the middle of the vector̃d. where h̄ is the
time reversed version ofh (re-ordering is accomplished by the
permutation matrixJ ), and H is of dimension(N + Na +
Nc)× (2(Nc+Na)) with a “hole” inside which is created by
the selection matrixS.

III. OVERVIEW OF THE PROPOSEDCIR ESTIMATOR

For comparison purposes we first provide the well known
correlation and ordinary least squares based estimators, where
correlations based estimation is denotedĥu (the subscriptu
stands for theuncleanedCIR estimate) and is given by

ĥu =
1

ra[0]
AHy[−Na:N+Nc−1], (19)

with ra[0] =
N−1∑
k=0

‖ak‖2, and the ordinary least squares CIR

estimate is denoted bŷhc (the subscriptc stands for the
cleanedCIR estimate) and is given by

ĥc = (AHA)−1AHy[−Na:N+Nc−1], (20)

where “cleaning” is accomplished by removing the known
sidelobes of the aperiodic correlation operation which is
accomplished in (19).

We can denote the two terms on the right side of Equa-
tion (8) by v = Hd + Qη[−Na−Lq :N+Nc−1+Lq]. Hence we
rewrite (8) as

y[−Na:N+Nc−1] = Ah + v. (21)

By noting the statistical independence of the random vectors
d andη, and also noting that both vectors are zero mean, the
covariance matrix,Kv of v is given by

Cov{v} = Kv ≡ 1
2
E{vvH} =

Ed

2
HHH + σ2

ηQQH , (22)

whereEd is the energy of the transmitted information symbols,
and equals to21 if the symbols{dk} are chosen from the set
{±1,±3,±5,±7}. For the model of (21) the generalized least
squares objective function to be minimized is

JGLS(h)=
(
y[−Na:N+Nc−1]−Ah

)H
K−1

v

(
y[−Na:N+Nc−1]−Ah

)
(23)

Then the generalized least-squares solution to the model of
Equation (21) which minimizes the objective function of
JGLS(y) is given by

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1]. (24)

The problem with Equation (24) is that the channel estimate
ĥK is based on the covariance matrixKv, which is a function
of the true channel impulse response vectorh as well as
the channel noise varianceσ2

η. In actual applications the
BLUE channel estimate of Equation (24) can not be exactly
obtained. Hence we need aniterative technique to calculate
generalized least squares estimate of (24) where every iteration
produces an updated estimate of the covariance matrix as
well as the noise variance. Without going into the details,
a simplified version of the iterations, which yield a closer

approximation to the exact BLUE CIR estimate after each step,
is provided in Algorithm 1. In the intermediate steps noise
variance is estimated byσ2

η = 1
2Eq(N−Na−Nc)

‖ŷ[Nc:N−Na] −
y[Nc:N−Na]‖2, whereEq = ‖q‖2 and ŷ[Nc:N−Na] = Ãĥth,
Ã = T {

[aNc+Na
, · · ·, aN−1]T , [aNc+Na

, · · ·, a0]
}

.

A. Approximate BLUE CIR estimation

An alternative approach may be used to produce results
of nearly the same quality as the results produced by the
algorithm described in Algorithm 1 while at the same time
requiring much less computational complexity (i.e., requiring
about the same number of multiplications necessary to imple-
ment Equation (20)) and having storage requirements similar
to that of Equation (20). According to this alternative, the
initial least squares estimation error can be reduced by seeking
an approximation in which it is assumed that the baseband
representation of the physical channelc(t) is a distortion-free
(no multipath) channel; that isc(t) = δ(t) which implies

h(t) = p(t) ∗ c(t) = p(t). (25)

Thus we can assume that our finite length channel impulse
response vector can be (initially) approximated by

h̃ = [0,· · · ,0︸ ︷︷ ︸
Na−Nq

, p[−Nq],· · · , p[0],· · · , p[Nq]︸ ︷︷ ︸
raised cosine pulse

, 0,· · · , 0︸ ︷︷ ︸
Nc−Nq

]T (26)

with the assumptions ofNa ≥ Nq and Nc ≥ Nq, that is
the tail span of the composite pulse shape is well confined to
within the assumed delay spread of[−NaT, NcT ]. Then the
approximation of (26) can be substituted into Equations (12-
18) to yield an initial (approximate) channel convolution
matrix H̃ and is given byH̃ = H̃ST whereH̃ is formed
as in Equation (15) with̄̃h = Jh̃. We can also assume a
reasonable received Signal-to-Noise (SNR) ratio measured at
the input to the matched filter which is given by

SNR =
Ed ‖(c(t) ∗ q(t))|t=nT ‖2

σ2
η

=
Ed ‖q‖2

σ2
η

. (27)

For instance we can assume an approximateSNR of 20dB
yielding an initial noise variance of

σ̃2
η =

Ed‖q‖2
100

. (28)

Then combiningH̃ and σ̃2
η we can pre-calculate the initial

approximate covariance matrix where the covariance matrix
of the approximate channel is given by

K̃v(H̃) =
1
2
EdH̃H̃

H
+ σ̃2

ηQQH , (29)

which further leads to the initial channel estimate of

ĥK̃ =
(
AH[K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1

︸ ︷︷ ︸
pre-computed and stored

y[−Na:N+Nc−1]. (30)

Equation (30) is the resulting a-BLUE CIR estimate.
The key advantage of the a-BLUE method is that



the matrix
(
AH [K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1 is con-
structed based on the initial assumptions that the re-
ceiver is expected to operate, and can bepre-computed
and stored in the receiver. By using the pre-stored matrix(
AH [K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1 as in Equation (30)
we obtain a CIR estimate with much lower computational
complexity than the BLUE algorithm. We also note that a-
BLUE CIR estimate can be used either as a stand-alone CIR
estimator, or as an initial estimate which can be used by the
BLUE algorithm.

Algorithm 1 Iterative Algorithm to obtain a CIR estimate via
Generalized Least-Squares

[1] Get an initial CIR estimate using one of (19), (20), or (30),
and denote it bŷh[0];

[2] Threshold the initial CIR estimate, and denote it byĥ
(th)

[0];
[3] Estimate the noise variancêσ2

η[0]
[4]
for k = 1, . . . , Niter do

[4-a] Calculate the inverse of the (es-
timated) covariance matrix K̂

−1

v [k] =[
Ed
2

H(ĥ
(th)

[k − 1])HH(ĥ
(th)

[k − 1]) + σ̂2
η[k − 1]QQH

]−1

;

[4-b] ĥK [k] = (AHK̂
−1

v [k]A)−1AHK̂
−1

v [k]y[−Na:N+Nc−1];
[4-c] Threshold the CIR estimatêhK [k], and denote it by

ĥ
(th)

[k];
[4-d] Estimate the noise variancêσ2

η[k].
end for

B. Analysis of Baseline Noise and CFAR Thresholding

The channel estimateŝhc or ĥK̃ have contributions due
to unknown symbols prior to and after the training sequence,
which are elements of the vectord, as well as the additive
channel noise. These contributions due to unknown symbols
and channel noise is calledbaseline noise, and we can give
an expression which summarizes the baseline noise for two
different estimators of Equations (20), and (30). The general
channel estimate can be written in the form

ĥ = h + ξ = h + B
(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)
(31)

where the baseline noise vectorξ is defined by

ξ = B
(
Hd + Qη[−Na−Lq:N+Nc−1+Lq ]

)
(32)

and the matrixB takes one of the two following different
forms depending on the estimator used:

B =





(
AHA

)−1

AH , for ĥc(
AH[K̃v(H̃)]−1A

)−1

AH [K̃v(H̃)]−1, for ĥK̃

(33)

Although we can derive the exact probability distribution
of the baseline noise term, we can alternatively make the
assumption ofnormality (having Gaussian distribution) of the
baseline noise. This assumption can be asserted by invoking

the central limit theorem[4]. The baseline noise vectorξ has
covariance matrixKξ = Cov{ξ}

Kξ = B(
Ed

2
HHH + σ2

ηQQH)BH = BKvBH (34)

whereKv is given in (22), and we make the approximation

ξ ∼ N (0, B(
Ed

2
HHH+σ2

ηQQH)BH) = N (0,BKvBH) (35)

by invoking the central limit theorem, whereB takes one of
the appropriate forms as displayed in Equation (33).

We also provide the probability distribution of‖ξk‖2 where
subscriptk denotes thekth element of the baseline noise vector
ξ = [ξ1, . . . , ξNa+Nc+1]T . Based on (35) we can show that
ξk has a Gaussian marginal distribution with zero mean and
variance[4]

σ2
ξk
≡ 1

2
E{ξkξ∗k} = 1T

k BKvBH1k (36)

that isξk = 1T
k B(Hd + Qη[−Na−Lq :N+Nc−1+Lq ]), and

ξk ∼ N (0,1T
k BKvBH1k︸ ︷︷ ︸

σ2
ξk

), (37)

whereB takes one of the appropriate forms as displayed in
Equation (33), and1k = [0, . . . , 0︸ ︷︷ ︸

k−1

, 1, 0, . . . , 0]T is the vector

of zeros of appropriate dimension with a 1 at thekth position.
Now we state an important fact about the probability dis-

tribution of the square-norm of the complex Gaussian random
variables [11]. Letξ = ξr + jξq be a complex valued random
variable, with statistically independent real and imaginary
parts ξr and ξq. Given thatξ is Gaussian with0 mean and
varianceσ2

ξ = σ2
ξr

= σ2
ξq

= 1
2E{ξξ∗}, the random variable

defined byZ = ‖ξ‖2 = ξ2
r + ξ2

q is exponentially distributed,
and its density is given by

pZ(z) =

{
1

2σ2
ξ
e
− z

2σ2
ξ , r ≥ 0

0, r < 0.
(38)

Although it is apparent that the real and imaginary parts of
the baseline noiseξk are not statistically independent, for the
sake of obtaining a simple thresholding rule and for the special
case of Digital TV system the correlation can be shown to be
small, we will proceed as if the real and the imaginary parts
of ξk are uncorrelated. With this simplified assumption‖ξk‖2
is an exponentially distributed random variable with parameter
2σ2

ξk
, and the density function is

p‖ξk‖2(r) =





1
2σ2

ξk

e
− r

2σ2
ξk , r ≥ 0

0, r < 0.
(39)

whereσ2
ξk

is defined by Equation (36).
There is one crucial detail for Algorithm 1 that has not

been discussed until this point. Right after obtaining a chan-
nel estimate, prior to using that channel estimate for noise
variance,σ2

η, calculation and prior to building the channel



convolution matrixH, the baseline noise has to be cleaned
from the channel estimate. This cleaning can be achieved via
thresholding. Previously we have used a fixed thresholding
algorithm [6] to get rid of the baseline noise. We have observed
that there can be significant performance loss if a fixed
thresholding is applied at every iteration. This performance
loss is inevitable due to getting rid of significant amount of
pulse tails embedded in the channel impulse response while
getting rid of the baseline noise. To overcome this problem we
propose constant false alarm1 rate (CFAR) based thresholding,
and it is based on determining a threshold based on the
approximate statistical distribution of the baseline noise which
is already provided in (37).

Recall that thekth tap of the channel estimate vector can
be expressed in the form

ĥk = hk + 1T
k B

(
Hd + Qη[−Na−Lq :N+Nc−1+Lq ]

)

︸ ︷︷ ︸
ξk

, (40)

andξk has a Gaussian distribution with zero mean and variance
σ2

ξk
= 1T

k BKvBH1k whereB takes one of the appropriate
forms as displayed in Equation (33), and the random vari-
able ‖ξk‖2 is assumed to have exponential distribution with
parameter2σ2

ξk
.

The problem of deciding whether thekth tap estimatêhk

is a zero tap or not can be formulated as a simple hypothesis
testing problem. That is we consider

H0 : ĥk = ξk, (41)

H1 : ĥk = hk + ξk; (42)

where underH0 the hypothesis is that thekth channel tap is
actually zero and we are observing only baseline noise, and
underH1 the hypothesis is that the channel tap is non-zero,
and we are observing (non-zero) channel tap plus the baseline
noise. We have shown that the probability distributions of the
kth channel tap under each hypothesis is given by

H0 : ĥk ∼ N (0, σ2
ξk

), (43)

H1 : ĥk ∼ N (hk, σ2
ξk

). (44)

After defining (43) and (44) we can come up with different
decision rules on how to threshold the channel estimateĥ,
however we choose to pursue the constant false alarm rate
(CFAR) based thresholding. False alarm probability based
decision rule is chosen so that the resulting threshold rule does
not require any a priori knowledge of the distribution of the
hypothesisH1, it is solely based onH0. False alarm rate is
the probability of choosingH1 whenH0 is true. Our decision
rule will be in the form of

setĥ(th)
k =

{
0, if ‖ĥk‖2 < εk

ĥk, otherwise.
(45)

1In statistical inference literature false alarm (rate) is referred to as the Type
I error (probability).

Based on the rule of (45) the false alarm rate, denoted bypFA

is given by

pFA = Pr{‖ĥk‖2 ≥ εk|H0 is true} =

∞∫

εk

1
2σ2

ξk

e
− r

2σ2
ξk dr

= e
− εk

2σ2
ξk . (46)

For the given level of false alarm probabilitypFA the threshold
level εk is given by

εk = −2σ2
ξk

ln (pFA) (47)

whereσ2
ξk

is given by (36).
Although we end up with a very simple expression for

the threshold of Equation (47), which should be applied to
the channel estimate as in (45), we still have the problem
of not knowing the true covariance matrixB( 1

2EdHHH +
σ2

ηQQH)BH and thekth diagonal element which we have

denoted byσ2
ξk

. We can only have an estimatêσ2
ξk

available
to be used in Equation (47). Thus it is natural to see some
performance loss due to using the estimateσ̂2

ξk
in place of the

true variance as will be shown in the simulations. Indeed the
thresholding step is going to be incorporated into the iterations
of the channel estimation with covariance matrix updated
at every iteration. Once the covariance matrix is updated at
every iteration we would have a new, and presumably better,
thresholdεk since we will get a better estimatêσ2

ξk
at every

iteration.
Note that the step[4-b] of the Algorithm is the main

step to compute the channel estimate, and is repeated here
for convenience (the square bracketed index[n] denote the
iteration step):

ĥK [n] =
(
AHK̂

−1

v [n]A
)−1

AHK̂
−1

v [n]y[−Na:N+Nc−1], (48)

where K̂
−1

v [n] = [Ed

2 H(ĥ(th)[n − 1])HH(ĥ(th)[n − 1]) +
σ̂2

η[n−1]QQH ]−1 is the inverse of the estimated covariance
matrix of v, and H(ĥ(th)[n − 1]) is the convolution matrix
(with a “hole” inside) constructed as in Equations (12-18) from
ĥ(th)[n− 1] which is the thresholded CIR vector estimated at
the previous iteration. The baseline noise for the main channel
estimation step of Equation (48) is

ξ = B(Hd + Qη[−Na−Lq :N+Nc−1+Lq ]), (49)

whereB = (AHK̂
−1

v [n]A)−1AHK̂
−1

v [n]. Thus the covari-
ance matrix of the baseline noise at then’th iteration step,
denoted byKξ[n], is given by

Kξ[n] = B(
Ed

2
HHH + σ2

ηQQH)BH . (50)

Since we can only use an estimate of the true covariance
matrix Kv (in the middle of Equation (50)), after the sim-
plifications we get

K̂ξ[n] = (AHK̂
−1

v [n]A)−1, (51)



TABLE I

SIMULATED CHANNEL DELAYS IN SYMBOL PERIODS, RELATIVE

GAINS. L = −1, K = 6,
Ld ≈ (1 + 333 + 2Nq)T = 453T ≈ 44µSEC, Nq = 60.

Channel taps Delay {τk} Gain {|ck|}
k = −1 -0.957 0.7263

Main k = 0 0 1
k = 1 3.551 0.6457
k = 2 15.250 0.9848
k = 3 24.032 0.7456
k = 4 29.165 0.8616
k = 5 221.2345 0.6150
k = 6 332.9810 0.4900

which is an estimate of the true covariance matrix ofξ of
Equation (49) if we could have used the true covariance matrix
Kv in Equation (48) to begin with. Then the CFAR based
threshold is given

εk = −2σ̂2
ξk

ln (pFA) (52)

whereσ̂2
ξk

= 1T
k K̂ξ[n]1k = 1T

k (AHK̂
−1

v [n]A)−11k .

IV. SIMULATIONS

We considered an 8-VSB [2] receiver with a single antenna.
8-VSB system has a complex raised cosine pulse shape [2].
The CIR we considered is given in Table I. The phase
angles of individual paths for all the channels are taken
to be arg{ck} = exp(−j2πfcτk), k = −1, · · · , 6 where
fc = 50

T and T = 92.9nsec. The simulations were run
at 28dB Signal-to-Noise-Ratio (SNR) measured at the input
to the receive pulse matched filter, and it is calculated by
SNR = Ed‖{c(t)∗q(t)}t=kT ‖2

σ2
η

. Figure 1 shows the simulation
results for the test channel provided in Table I. Part (a) shows
the actual CIR; part (b) shows the correlation based CIR
estimate, of Equation (19)̂hu; part (c) shows the ordinary
LS based CIR estimate of Equation (20)ĥc; part (d) shows
the approximate BLUE CIR estimate of Equation (30) with an
assumed SNR of 20dB; part (e) shows the BLUE based CIR
estimate of Algorithm 1, after the first iteration,ĥK [1], where
we used CFAR based thresholding withpFA = 10−5; part
(f) shows the ideal BLUE case for which the true covariance
matrix Kv is known. Part (f) provides a bound for the rest
of the BLUE algorithm. We note superior performance of the
BLUE algorithm even after the first iteration, as compared to
the correlation based and ordinary least squares based CIR
estimation schemes. However iterative BLUE CIR estimation
algorithm is computationally very demanding, thus in many
applications the approximate BLUE, as shown in part (d),
might be sufficiently acceptable as an initial estimate. The
performance measure is the normalized least-squares error
which is defined byENLS = ‖h−ĥ‖2

Na+Nc+1 . Approximate BLUE
significantly outperforms the ordinary least squares CIR esti-
mation, but it has virtually identical computational complexity
and storage requirement.
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Fig. 1. Part (a) shows the real part of the actual CIR; part (b) shows the
correlation based CIR estimate of Equation (19)ĥu; part (c) shows the LS
based CIR estimate of Equation (20)ĥc; part (d) shows the approximate
BLUE CIR estimate of Equation (30) with an assumed SNR of 20dB; part (e)
show the BLUE based CIR estimate of Algorithm 1, after the first iteration,
ĥK [1]; part (f) shows the ideal BLUE case for which the true covariance
matrix Kv is known, which provides a bound for the rest of the estimators.
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[6] S. Özen, M. D. Zoltowski, M. Fimoff, “A Novel Channel Estimation
Method: Blending Correlation and Least-Squares Based Approaches,”
Proceedings of ICASSP, v. 3, pp. 2281-2284, 2002.
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