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Abstract

In this paper we introduce the idea of using 8-VSB [1] training sequence correlation, which is
already available in the current digital TV receivers, to initialize the taps of the decision feedback
equalizer (DFE). Currently the feed-forward taps of the DFE are initialized to all zeros, with
the cursor position initialized to 1. However it is desirable to speed up the convergence of the
adaptive equalizer as well as to enable convergence in cases where it would not otherwise occur.
Thus we propose to use the 8-VSB training sequence correlation to obtain a multi-path channel
estimate, and then to initialize the feed-forward and the feed-back taps of the DFE accordingly.

1 Introduction

DFE's have been widely used in digital receivers due to their implementation simplicity and reason-
ably good performance under certain multi-path conditions. However, it is desired to enhance the
adaptive equalizer training capability of 8-VSB receivers [1]. This may be done by taking advantage
of the frame synchronization/training sequence correlation processing that already exists in the re-
ceiver for the purpose of data frame synchronization. The output of this processing can be viewed as
an estimate of the channel impulse response with the cursor represented by the largest peak. This
estimate may be used as a starting point for calculating initial tap values for a DFE.

2 Decision Feedback Equalizer Model

The DFE under consideration is shown in Figure 1. The cursor position is �xed as the last bin of
the feed-forward �lter, ~dk denote soft output of the DFE to the channel decoder, and d̂�k denote the
past decisions. We will assume that there are Nff + 1 feed-forward taps including the cursor, and
Nfb feedback taps. Here hff [n] and hfb[n] denote the impulse responses of the �lters corresponding
to the feed-forward and the feedback �lter portions of the DFE, respectively.

3 Discrete-time Channel Model, and Channel Estimation

The received sequence is denoted by u[k] with �rst training symbol at u[0], precursor symbols at
positions k � 0, post-cursor symbols at positions k < 0. The known training sequence is s[k] for
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Figure 1: DFE Block Diagram

k = 0; : : : ; Ltr � 1. De�ning the auto and cross-correlation functions, rss[m] and rsu[m] by

rs[m] =
Ltr�1X
k=0

s[k]s[k +m] (1)

rsu[m] =
Ltr�1X
k=0

s[k]u[k +m]; (2)

where fs[k] 2 A = f�A;+Ag; A 2 R1g is the training sequence (known and stored at the receiver).

3.1 Correlation Properties of the Training Sequence

We will �rst go over the correlation properties of a maximal length PN-sequence. We will denote
a PN-sequence of length L as PNL. In general, the periodic autocorrelation of a binary valued
(f+A;�Ag) PNL sequence is given by

rPNL
[m] =

(
LA2; if m = 0;�L;�2L; � � �
�A2: otherwise.

(3)

However if the PN sequence used is �nite and the standard linear correlation is used, then the auto-
correlation values corresponding to the non-zero lags will not constant and will not be as low as �A2.
As a simple illustration consider a sequence composed of six PN511 appended back to back, that is
let

y = [PN511; PN511; PN511; PN511; PN511; PN511]
T : (4)

Then rxy[m], with x = [PN511]T , will be given as in Figure 2. It is important to note that we will
obtain a low correlation value of �A2 for lags that are not multiples of L = 511, corresponding to
the intermediate PN511 portions of the long sequence y. However as illustrated in Figure 2, for outer
most lags we will not achieve this constant and low correlation value; instead we will have a \noise"
like correlation due to the �niteness of the sequences.

The training sequence used at the transmitter is, a part of the digital TV standard [1], which is
actually

~s = [PN511; PN63;�PN63; PN63]
T :

We also have reserved frame bits and information bits right before and after the training sequence
~s. As a summary the correlations of the received signal with the stored sequence will be \noisy"
because

� the PN sequences are �nite in length, they won't achieve their low correlation value for non-zero
lag;
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Figure 2: Correlation properties of �nite PN sequences. Note the \noisy" correlation at both ends
of the correlation values.

� the span of the cross-correlation includes the known training sequence as well as the random
data symbols and reserved data symbols.

For the time being we are still working on which sequence to use at the receiver, namely we can
use PN511 only or the exact same transmitted sequence ~s.

3.2 Channel Estimation

Based on the auto-correlation property of Equation 3, our claim is that we can simply estimate the
channel by cross-correlating s[k] (known and stored at the receiver) with the received sequence u[k]

The pre-cursor impulse response estimate ~ha[n] is determined from the cross-correlation of the
stored training sequence in the receiver and the actual received symbols at lags from 0 to �Nff , with
respect to the start of the received training sequence. That is

~ha[n] =
Ltr�1X
k=0

s[k]u[k+ n] for lags n = 0;�1; : : : ;�Nff ; (5)

and similarly post-cursor response ~hc[n] is determined from the cross-correlation of the stored training
sequence in the receiver and the actual received symbols at lags from 1 to Nfb, with respect to the
start of the received training sequence which is written compactly as

~hc[n] =
Ltr�1X
k=0

s[k]u[k + n] for lags n = 1; : : : ; Nfb; (6)

Let ~H(z) denote the estimated channel transfer function. Then with respect to the channel esti-
mation procedure outlined by Equations (5,6), ~H(z) is given by the Z-transform of the concatenated
channel estimates as

~H(z) =
0X

k=�Nff

~ha[k]z
�k +

NfbX
k=1

~hc[k]z
�k



=
NfbX

k=�Nff

~h[k]z�k (7)

where the concatenated estimated channel impulse response ~h[n] is given as

~h[n] =

(
~ha[n]; for �Nff � n � 0
~hc[n]; for 1 � n � Nfb:

(8)

Assuming that there is a level thresholding algorithm taking place right after the cross-correlations,
we can write ~H(z) in general as

~H(z) = ~�Mz
Da
M + � � �+ ~�2z

Da
2 + ~�1z

Da
1 + ~�0 + ~�1z

�D1 + ~�2z
�D2 + � � �+ ~�Nz

�DN

= ~�0

�
�Mz

Da
M + � � �+ �1z

Da
1 + 1 + �1z

�D1 + � � �+ �Nz
�DN

�
(9)

where we de�ned �i = ~�i=~�0, for 1 � i � N , and �k = ~�k=~�0, for 1 � k � M . Thresholding
algorithm will be in the form of setting the estimated channel taps to zero if they are below a certain
threshold; that is

Set ~h[n] = 0; if ~h[n] < " for n = �Nff ; � � � ;�1; 0; 1; � � � ; Nfb: (10)

The adoption of the notation used in Equation (9) is based on the fact that, after the thresholding,
there are usually very few dominant taps, or equivalently we can say that the channels we encounter
are generally sparse. A particular threshold selection/optimization criterion is to be determined later.

Note that in Equation (9) �k's are the coe�cients of the estimated channel corresponding to the
pre-cursor (anti-causal) part, and �i's are the coe�cients corresponding to the post-cursor (causal)
part. Da

k 's, Di's denote the delays associated with the anti-causal and causal part respectively. As a
convention we are assuming that 1 � D1 < D2 < � � � < DN , and similarly 1 � Da

1 < Da
2 < � � � < Da

M .
Also by the construction of the channel estimates in Equations (5,6) we will have Da

M � Nff and
DN � Nfb.

At this point we can de�ne the causal and anti-causal parts of the transfer function of Equation (9)
as

Ha(z) = ~�0

�
�Mz

Da
M + � � �+ �2z

Da
2 + �1z

Da
1 + 1

�
(11)

Hc(z) = ~�0

�
�1z

�D1 + �2z
�D2 + � � �+ �Nz

�DN

�
(12)

such that ~H(z) = Ha(z) +Hc(z). The partition of Equations (11,12) will enable us to develop the
appropriate feed-forward and feed-back �lter portions of the Decision Feedback Equalizer (DFE).

4 DFE Feed-Forward Filter Tap Initialization

It is known that the feed-forward part of the DFE is supposed to deconvolve the channel output; that
is its primary function is to do the inverse �ltering to get rid of the feed-forward part of the channel,
given by Equation (11). Considering the anti-causal part of the channel transfer function given by
Equation (11), we need to establish a fast method to give a reasonably accurate initial inverse �lter.
Let the inverse of the Ha(z) be denoted by HI

a(z). We would like to have Hff (z) = HI
a(z) ideally,

but since our ideal inverse �lters be an in�nite impulse response (IIR) �lter, and we are going to
implement by an �nite impulse response (FIR) (a �lter with �nite number of taps), we would have
Hff (z) � HI

a(z). We have 3 di�erent methods to initialize HI
a(z). However, we must note that

the methods 2 and 3 are \zero-forcing" in nature. We will soon modify them to reduce the noise
enhancement.



Method 1: The most trivial method is to initialize all of the Nff taps to zero, and let the cursor
tap be initialized to 1.

Method 2: This is the Inversion and Truncation (IT) method which determines the linear �lter
with �nite number of taps which is the best inverse of the anti-causal channel to minimize the
peak distortion criterion. Recall that

a

1� r
= a

�
1 + r + r2 + � � �

�
=

1X
k=0

ark

as long as jrj < 1. Using this fact, and since HI
a(z) =

1
Ha(z)

we have

HI
a (z) =

1

~�0

�
1 � 
(z) + 
2(z)� 
3(z) + � � �

�

=
1

~�0

1X
k=0

(�1)k
k(z) (13)

where


(z) = �Mz
Da
M + � � � + �2z

Da
2 + �1z

Da
1 =

Ha(z)

~�0
� 1 (14)

for j
(z)j < 1, where j
(z)j denotes the magnitude of the complex number 
(z). The simplest
approach here is to initialize the feed-forward �lter by the truncated version of Equation (13);
that is Hff(z) will be initialized by

Hff (z) =
1

~�0

�
1 � 
(z) + 
2(z)� 
3(z) + � � � + (�1)

~Nff

~Nff (z)

�

=
1

~�0

~NffX
k=0

(�1)k
k(z) (15)

where ~Nff = b
Nff

Da
M

c. Notice that the sum in Equation 15 is �nite regardless of j
(z)j.

It must be noted that Equation (15) might be truncated too early depending on the delays and
the length of the feed-forward �lter. We can further improve Equation (15) by assuming that
we have, for example M = 2 dominant multi-paths on the anti-causal (precursor) estimated
channel. The results shown here could easily be extended to arbitrary M delays, for all M �
Nff .

We �rst introduce the peak distortion criterion, Dp, as established by Lucky [2, 3, 4] which is
de�ned as:

Dp =
1

jq0j

Da
M
+Nff+1X
n=1

jqn � q̂nj (16)

where q̂ = [q̂0; q̂1; � � � ; q̂Da
M
+Nff+1]

T is the desired equalized response out of the feed-forward

equalizer (channel and equalizer combined), and q = [q0; q1; � � � ; qDa
M
+Nff+1]

T is the actual
equalized response. With a zero-forcing equalizer (ZF), the tap coe�cients hff are chosen
to minimize the peak distortion of the equalized channel de�ned as in Equation (16). For
our purposes we particularly choose q̂ = [1; 0; � � � ; 0]T . It was shown that [2, 5] if the initial
distortion Dinit without equalization is less than unity, that is

Dinit =
1

jha0j

Da
MX

n=1

jhanj < 1 (17)



then Dp is minimized by those Nff + 1 equalizer tap values. If the initial distortion before
equalization is greater than unity, the ZF criterion is no longer guaranteed to minimize the
peak distortion. However, even if the initial distortion is greater than unity, using the channel
estimates to initialize the DFE feed-forward taps as established in the rest of the Method 2,
and following Method 3, will still yield a faster convergence as compared to the DFE with taps
initialized by Method 1.

Following the developments in [5], for the anti-causal channel estimate of

ha(n) = [han; h
a
n�1; � � � ; h

a
n�Da

M
]T

= ~�0[1; 0; � � � ; 0| {z }
Da
1
�1 zeros

; �1; 0; � � � ; 0| {z }
Da
2
�Da

1
�1 zeros

; �2; � � � ; �M�1; 0; � � � ; 0| {z }
Da
M
�Da

M�1
�1 zeros

; �M]
T (18)

we form the convolution matrix Hconv as

Hconv = [ha(0);ha(1); � � � ;ha(Nff)]; (19)

and we introduce the desired response vector truncated to match the equalizer length ~q =
[~q0; ~q1; � � � ; ~qNff

]T . Then, as long as the inverse of the convolution matrix exists, the unique
vector of optimal feed-forward equalizer tap gains, hff , satis�es

hTffHconv = ~qT =) hTff = ~qTH�1
conv

: (20)

Theorem 1: Let the anti-causal channel be given by

Ha(z) = ~�0

�
1 + �1z

Da
1 + �2z

Da
2

�
(21)

with 1 � Da
1 < Da

2 � Nff , or equivalently

ha = ~�0[1; 0; � � � ; 0| {z }
Da
1
�1 zeros

; �1; 0; � � � ; 0| {z }
Da
2
�Da

1
�1 zeros

; �2]
T ; (22)

and given that the initial distortion condition of Equation (17) holds; then the transfer
function of the unique linear feed-forward equalizer with Nff + 1 taps which minimizes
the peak distortion criterion is given by

Hff (z) =
1

~�0

kmaxX
k=0

lmax(k)X
l=0

 
k

l

!
(�1)k

�
�k�l1 �l2z

Dk;l

�
(23)

where

Dk;l = (k � l)Da
1 + lDa

2 = kDa
1 + (Da

2 �Da
1)l; (24)

kmax =

$
Nff

Da
1

%
(25)

lmax(k) =

$
Nff � kDa

1

Da
2 �Da

1

%
: (26)

which also satis�es the Equation (20) where the desired response is given by

~q = [1; 0; � � � ; 0| {z }
Nff zeros

]T (27)



and the convolution matrix is given by

Hconv =
1

~�0

2
666666666666666666666666664

1 0 � � � 0 �1 0 � � � 0 �2 0 � � �
0 1 0 � � � 0 �1 0 � � � 0 �2 0 � � �

0 � � �
. . . 0 � � � 0

. . . 0 � � � 0
. . . � � �

0
... 0

. . . 0 � � � 0 �1 0 � � � �2
...

. . . . . . 0 � � � 0

0
... 0 0 1 0

. . . � � �
...

0
... 0 0 � � � �1

� � �
. . . 0

... � � � � � �
� � � 0 1 0

0 � � � 0 1

3
777777777777777777777777775
(Nff+1)�(Nff+1)

;

Before we give the full proof of the theorem, we will provide the underlying motivation behind
it. Since our desired response is given by (27), then by Equation (20) we have

hTff = [1; 0; � � � ; 0]H�1
conv

(28)

which simply implies that hTff is the �rst row of the inverse of Hconv. Let [H]fm;ng denote the
fm;ng'th element , [H]fm;:g denote the m'th row, and similarly [H]f:;ng denote the n'th column
of the matrix H. Let coffm;ngH be the cofactor of the matrix H with respect to the fm;ng'th
element. Then with this notation in mind we have

hTff =
h
H�1

conv

i
f1;:g

(29)

=
1

det (Hconv)
[adj (Hconv)]f1;:g (30)

=
1

~�
Nff+1
0

h
coff1;1gHconv; coff2;1gHconv; � � � ; coffNff+1;1gHconv

i
: (31)

Equation (30) is simply obtained from Equation (29) by using the de�nition of the matrix
inverse, and Equation (31) is obtained from Equation (30) using the de�nition of adjoint matrix
which is the transpose of the cofactor matrix, and the fm;ng'th element of the adjoint matrix
is given by

[adj (H)]fm;ng = coffn;mgH: (32)

The important argument here we make is that Equation (23) introduced in Theorem gives us
the same result with Equations (29-31) for the channel of (21), or equivalently for the channel
of (22).

Proof: In order to prove this theorem, it is su�cient to make the observation that Equation (23)
is nothing but the improved truncated expansion of Equation (15) with the number of
terms included in the truncated expansion is determined by the upper limits of the outer
summation kmax and inner summation lmax(k) respectively. It is also required to prove
the following lemma on the ordering of the exponents of z before deriving the equations
governing kmax and lmax(k).



Lemma: For Da
1 < Da

2 we have Dk;(l+1) > Dk;l.

Proof:

Dk;(l+1) = (k � (l + 1))Da
1 + (l + 1)Da

2 = kDa
1 + (Da

2 �Da
1) l:

(33)

Since Dk;l = kDa
1 + (Da

2 �Da
1)l; and Da

1 < Da
2 we have

Dk;(l+1) �Dk;l = Da
2 �Da

1 > 0

Hence Dk;(l+1) > Dk;l. 2lemma

Lemma shows the ascending ordering of the exponents of the z for each k. The upper limit
for the outer summation on k is found by observing that the maximumallowable kmax times
the smallest delay,Da

1 must be less than equal to Nff , that is kmaxD
a
1 � Nff , and this gives

us kmax = b
Nff

Da
1

c. Similarly, for each k, the upper limit on the inner summation over l is

given byDk;lmax(k) � Nff ; then using Equation (24) we have kDa
1+(D

a
2�D

a
1)lmax(k) � Nff ,

which gives us for every outer summation index k we have lmax(k) =
j
Nff�kD

a
1

Da
2
�Da

1

k
. 2Theorem 1

Example: We can consider a simple example where we have two dominant paths at the
anti-causal channel response. Assume with Da

1 = 19, Da
2 = 30 and assume we have a

feed-forward �lter with Nff + 1 = 100 taps (including the cursor). Then ~Nff = b99
30c = 3,

and according to Equation (15) (ignoring ~�0 term)

Hff (z) =
3X

k=0

(�1)k
�
�1z

19 + �2z
30
�k

= 1 �
�
�1z

19 + �2z
30
�
+
�
�1z

19 + �2z
30
�2
�
�
�1z

19 + �2z
30
�3

= 1 �
�
�1z

19 + �2z
30
�
+
�
�2
1z

38 + 2�1�2z
49 + �2

2z
60
�

�
�
�3
1z

57 + 3�2
1�2z

68 + 3�1�
2
2z

79 + �3
2z

90
�

(34)

We can easily argue that the expansion in (34) is truncated too short, and using the
formulation developed in Equations (21{26) we can include the terms that are the powers
of the smaller delay Da

1 and possibly combinations with Da
2 such that our improved feed-

forward �lter initialization will start with few more extra taps

Hff (z) = 1�
�
�1z

19 + �2z
30
�
+
�
�2
1z

38 + 2�1�2z
49 + �2

2z
60
�

�
�
�3
1z

57 + 3�2
1�2z

68 + 3�1�
2
2z

79 + �3
2z

90
�

+�4
1z

76 + 4�3
1�2z

87 + 6�2
1�

2
2z

98 + �5
1z

95 (35)

Now we can give the generalized version of Theorem 1, where the Equations (23-26) are extended
for the anti-causal channel estimate with M taps with the transfer function

Ha(z) = ~�0

�
�Mz

Da
M + � � �+ �2z

Da
2 + �1z

Da
1 + 1

�
; (36)

or equivalently with impulse response vector

ha(n) = [han; h
a
n�1; � � � ; h

a
n�Da

M
]T

= ~�0[1; 0; � � � ; 0| {z }
Da
1
�1 zeros

; �1; 0; � � � ; 0| {z }
Da
2
�Da

1
�1 zeros

; �2; � � � ; �M�1; 0; � � � ; 0| {z }
Da
M
�Da

M�1
�1 zeros

; �M ]T : (37)



Theorem 2: Let theM tap anti-causal channel be given by (36), or (37), with 1 � Da
1 < � � � <

Da
M � Nff , and given that the initial distortion condition of Equation (17) holds; then the

transfer function of the unique linear feed-forward equalizer with Nff +1 taps which minimizes
the peak distortion criterion is given by

Hff(z) =
1

~�0

k1;maxX
k1=0

k2;max(k1)X
k2=0

� � �
kM�1;max(k1;k2;���;kM�2)X

kM�1=0

kM;max(k1 ;k2;���;kM�1)X
kM=0 

k1
k2

! 
k2
k3

!
� � �

 
kM�1

kM

!
(�1)k1

�
�k1�k21 �k2�k32 � � � �

kM�1�kM
M�1 �kMM zD(k1;���;kM )

�

=
1

~�0

k1;maxX
k1=0

k2;max(k1)X
k2=0

� � �
kM�1;max(k1;k2;���;kM�2)X

kM�1=0

kM;max(k1;k2;���;kM�1)X
kM=0

k1! (�1)
k1 �k1�k21 �k2�k32 � � ��

kM�1�kM
M�1 �kMM zD(k1;���;kM )

kM !
M�1Q
l=1

((kl � kl+1)!)
(38)

where

D(k1; � � � ; kM ) = (k1 � k2)D
a
1 + (k2 � k3)D

a
2 + � � �+ (kM�1 � kM )Da

M�1 + kMD
a
M

= k1D
a
1 + (Da

2 �Da
1)k2 + � � �+ (Da

M �Da
M�1)kM ; (39)

k1;max =

$
Nff

Da
1

%
(40)

kn;max(k1; � � � ; kn�1) =

6666664
Nff � k1D

a
1 �

n�1P
l=2

(Da
l �Da

l�1)kl

Da
n �Da

n�1

7777775 ; for 2 � n �M (41)

which also satis�es the Equation (20) where the desired response is given by

~q = [1; 0; � � � ; 0| {z }
Nff zeros

]T : (42)

Method 3: This method is based on a method solving the Equation (20), hTffHconv = ~qT without
calculating the inverse of Hconv explicitly, for

~q = [1; 0; � � � ; 0| {z }
Nff zeros

]T (43)

and

ha(n) = [han; h
a
n�1; � � � ; h

a
n�Nff

]T

Hconv = [ha(0);ha(1); � � � ;ha(Nff )]:

We will �rst develop the solution hTff for the general case (channel with possibly all Nff + 1
non-zero taps), then the solution for the sparse channel case will follow afterwards. In this case



our convolution matrix will be an upper triangular Toeplitz matrix, and will be given as

Hconv =

2
666666666666666666664

ha0 ha1 ha2 � � � haNff�1
haNff

0 ha0 ha1 ha2 haNff�1

0 0 ha0 ha1 ha2
...

0
... 0

. . . . . . . . .

0
... 0

. . . . . . ha2
. . . ha1 ha2

...
... ha0 ha1 ha2

0 ha0 ha1
0 0 � � � 0 0 ha0

3
777777777777777777775
(Nff+1)�(Nff+1)

;

or equivalently the fm;ng'th element of the convolution matrix Hconv is given by

[Hconv]fm;ng =

(
han�m; if m � n
0; otherwise

(44)

for 1 � m;n � Nff + 1. The required vector

hff = [hff0 ; hff1 ; � � � ; hffNff
]T

can be obtained by

hff0 =
1

ha0

hff1 = �
1

ha0

�
hff0 ha1

�

hff2 = �
1

ha0

�
hff0 ha2 + hff1 ha1

�

hff3 = �
1

ha0

�
hff0 ha3 + hff1 ha2 + hff2 ha1

�
... =

...

hffNff
= �

1

ha0

�
hff0 haNff

+ hff1 haNff�1
+ � � �+ hffNff�1

ha1
�

(45)

where the general recursion follows trivially by induction that

hffk = �
1

ha0

k�1X
n=0

hffn hak�n; for k = 1; 2; � � � ; Nff (46)

with the initialization of hff0 = 1=ha0. It is important to note that in Equation (46), hffk depends
only on the set fhff0 ; hff1 ; � � � ; hffk�1g which has been calculated in the previous steps.

The computational complexity of the algorithm (46) has been studied. The number of multipli-
cation operation as a function of number of multi-path components has been given in Figure 3.
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Figure 3: Number of multiplication operations as a function of number of multi-paths for the algo-
rithm of (46).

5 DFE Feedback Filter Tap Initialization

The feedback �lter hfb[n] should be initialized to the convolution of the estimated channel impulse
response and the feed-forward �lter, which is given by

hfb[n] = ~h[n] � hff [n]; for 1 � n � Nfb (47)

where � denotes the linear convolution operation.

6 Practical Applications

� Use correlation channel estimate for post-cursor only tap initialization (method with the least
computation):

{ Initialize all taps to zero, except cursor tap = 1 (Method-1 in previous section)

{ When �rst training sequence arrives, run equalizer in training mode and simultaneously
do correlation channel estimate

{ At end of training sequence, leave precursor taps with trained values, initialize post-cursor
taps to convolution of the post-cursor channel estimate and precursor trained values

� Use correlation channel estimate for post-cursor and precursor tap initialization, case A:

{ When the �rst training sequence arrives it is stored in memory (quantized soft symbols
from channel) at the same time the correlation is being calculated.

{ At the end of the sequence, an FIR approximation of the precursor channel inverse is
calculated and used to initialize the precursor taps (use methods 2 or 3 established in the
previous section).

{ The post-cursor taps are initialized to the convolution of the post-cursor channel estimate
and the calculated precursor tap values.



{ The training sequence from memory is run through the DFE running in training mode.

{ Data symbols received during the steps 2, 3 and 4 above are discarded (at most 1 or 2
segments). At the completion of the 4th step, received data may be run through the DFE
in DD/blind mode.

� Use correlation channel estimate for post-cursor and precursor tap initialization, case B:

{ When the �rst training sequence arrives, the correlation channel estimate is calculated.

{ At the end of the sequence, an FIR approximation of the precursor channel inverse is
calculated and used to initialize the precursor taps (use methods 2 or 3 established in the
previous section).

{ The post-cursor taps are initialized to the convolution of the post-cursor channel estimate
and the calculated precursor tap values.

{ The equalizer is frozen until the next training sequence.

{ When the next training sequence arrives, we start the equalizer in training mode and
simultaneously do another correlation/channel estimate. If the estimate of the channel
is close enough to the 1st estimate (by some criterion TBD), then we let the equalizer
continue. If not, we start over again. This will continue until the channel is su�ciently
stationary for one VSB frame time.
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