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ABSTRACT

In this paper, we show how the convergence time of equalizers for 8-VSB based on the conjugate gradient (CG) algo-
rithm can be considerably improved through initialization based on a channel estimate. We derive real and complex
minimum mean-square error (MMSE) equalizers and implement them adaptively using the conjugate gradient, recursive
least squares (RLS), and least mean squares (LMS) algorithms. We show that both CG and RLS have similar convergence
times — both are much faster than LMS. Since the CG algorithm is easily initialized, we compare several methods of
initialization to determine how each affects convergence and then apply the best methods to initialize equalizers using
channel estimates. We find that initializing the correlation matrices and filling the feedback taps with training symbols
greatly speeds convergence of the CG adaptive equalizer, potentially approaching the rate of convergence when running
the algorithm on the matrix equations using the actual channel.

Keywords: Adaptive filtering, conjugate gradient method, decision feedback equalization (DFE), digital television, ves-
tigial sideband (VSB)

1. INTRODUCTION

The terrestrial broadcast standard for digital television in the United States is based on 8-level vestigial sideband mod-
ulation (8-VSB).1 According to the standard, a field sync segment is transmitted every24:2ms containing 704 known
symbols — four segment sync symbols, a length 511 pseudo-noise (PN) sequence, and three length 63 PN sequences.
These symbols may be used to train an adaptive equalizer. Since the broadcast environment is characterized by long
channel impulse responses,2, 3 long equalizers are required, which makes it more difficult for an adaptive equalizer to
converge within the available training period.

Previous work on equalization for 8-VSB has focused on blind and semi-blind techniques.3{6 However, when the
training sequence is used (as in a semi-blind technique), a correlation must be performed to find the start of the training
sequence. This correlation operation may be used to estimate the multipath channel and the channel estimate may then be
used to aid the convergence of a training-based adaptive equalizer. More sophisticated techniques may also be applied to
improve the channel estimate, as demonstrated byÖzen et al.7

Recent work on reduced-rank filtering8 has linked the multi-stage nested Wiener filter to the conjugate gradient
(CG) algorithm. Chang and Willson9 have analyzed adaptive implementations of the CG algorithm. Chowdhury and
Zoltowski10 have successfully applied the CG algorithm to DS-CDMA feedforward equalizers and found that it con-
verges at about the same rate as the recursive least squares (RLS) algorithm with approximately the same computational
complexity. In this paper, we show how the convergence time of decision feedback equalizers (DFE’s) for 8-VSB based
on the CG algorithm can be considerably improved through initialization based on a channel estimate. We begin by de-
scribing the 8-VSB system model and deriving expressions for real and complex minimum mean-square error (MMSE)
equalizers. These equalizers are then implemented adaptively using the CG, RLS, and least mean squares (LMS) algo-
rithms to compare their uninitialized convergence times. We then compare several methods of initialization to determine
how each affects convergence and then apply the best methods to initialize equalizers using channel estimates. Finally,
we present our conclusions.

Further author information: (Send correspondence to: M.D.Z.)
M.D.Z.: E-mail: mikedz@ecn.purdue.edu, Telephone: 765-494-3512, Fax: 765-494-0880
W.J.H.: E-mail: hilleryw@purdue.edu, S.O.: ozen@ecn.purdue.edu, M.F.: E-mail: Mark.Fimoff@zenith.com



2. SYSTEM MODEL

The baseband equivalent discrete-time system model is shown in Fig. 1 where symbol-rate sampling is assumed. The
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Figure 1: System model.

transmitted symbol sequence is represented bys[k] where, in this study, we assume that the symbols are independent
and equally probable. Symbols in the 8-VSB constellation are taken from the setf�7;�5;�3;�1; 1; 3; 5; 7g. The
continuous-time channel containsM paths with delays�i and complex gains�i. We assume that the path with maximum
gain magnitude occurs at a delay of zero. When convolved with the complex transmitted pulseq(t), the channelc(t)
becomes

c(t) =

MX
i=1

�iq(t� �i): (1)

To match the specification in the ATSC standard,1 the pulseq(t) is a square-root raised cosine pulse designed for one-
half the symbol rate whose spectrum has been shifted up in frequency by one-fourth the symbol rate. In other words, if
pRRC (t) is a square-root raised cosine pulse with zero crossings at non-zero multiples of2Ts, whereTs is the symbol
period, then

q(t) = ej�
Fs

2
tpRRC (t); (2)

whereFs = 1
Ts

. The discrete-time channel is found by samplingc(t) at the symbol rate:c[k] = c(kTs). The noise
sequencen[k] is complex additive white Gaussian noise with a power spectral density ofN0. The receiver filterq[k] is
matched to the transmitter pulse shaping filter so thatq[k] = q�(�kTs) = q(kTs), where the asterisk superscript (�)
denotes complex conjugation. The composite channel at the input to the equalizer is defined to beh[k] = c[k]�q[k] (here,
the large asterisk denotes convolution) and therefore

y[k] =
X
m

s[k �m]h[m] + �[k]; (3)

where�[k] = n[k] � q[k] is the noise at the input to the equalizer.

3. EQUALIZER DERIVATIONS

As shown in Fig. 1,y[k] may be equalized using either a complex or real feedforward sectiongF [k]. For the complex
equalizer, the real part of the signal is taken after the feedforward section. The real part of the signal is taken before the
feedforward section for the real equalizer. The composite channelh[k] is assumed to have lengthLh + 1 with Lha taps
prior to the peak of the maximum magnitude path andLhc taps afterward; thus,Lh = Lha + Lhc. We represent the
channel by a vector

h = [h[�Lha]; : : : ; h[�1]; h[0]; h[1]; : : : ; h[Lhc] ]
T
: (4)

We also use a finite length representation of the receiver matched filterq[k] with length2Lq + 1:

q = [ q[�Lq]; : : : ; q[�1]; q[0]; q[1]; : : : ; q[Lq] ]
T : (5)



We begin with the derivation of the complex equalizer. The equalizer is assumed to haveNF + 1 feedforward taps
andNB feedback taps. AssemblingNF + 1 consecutive samples ofy[k] into a vectory yields

y[k] =Hs[k] +Qn[k]; (6)

wheren[k] = [n[k + Lq] : : : n[k � Lq �NF ] ]
T , s[k] = [ s[k + Lha] : : : s[k � Lhc �NF ] ]

T ,

H =

2
6664
hT 0 � � � 0

0 hT � � � 0
...

...
...

...
0 0 � � � hT

3
7775 ; and Q =

2
6664
qT 0 � � � 0
0 qT � � � 0
...

...
...

...
0 0 � � � qT

3
7775 : (7)

The symbol estimatês[k �K] is given by

ŝ[k �K] = RefgF
Hy[k]g+ gB

TsB [k �K � 1]; (8)

whereK is the cursor location (defined below),gF = [ gF [0]; : : : ; gF [NF ] ]
T , gB = [ gB[1]; : : : ; gB[NB ] ]

T , sB [k] =
[ s[k]; : : : ; s[k + 1�NB ] ]

T , and the superscriptH denotes conjugate transpose. In this analysis we assume that all
decisions are correct. If we adopt the convention that the subscriptsR andI indicate the real and imaginary parts of
quantities, then

ŝ[k �K] = gFR
TyR[k] + gFI

TyI [k] + gB
TsB [k �K � 1]

= gFC
TyC [k] + gB

T sB [k �K � 1]; (9)

wheregFC =
�
gFR

T gFI
T
�T

andyC [k] =
�
yR

T [k] yI
T [k]

�T
. We may now write

yC [k] =HCs[k] +QCnC [k]; (10)

whereHC =
h
HR

T HI
T
iT

,QC =

�
QR �QI

QI QR

�
, andnC [k] =

�
nR

T [k] nI
T [k]

�T
.

In the decision feedback equalizer, we use the cursor to define exactly which symbol is being estimated. To motivate
the cursor definition, we use the real equalizer and consider a channel containing a single path with real gain at delay
zero. In this case,hR[k] is a delta function atk = 0 and the sampleyR[k] corresponds to the symbols[k] (since
yR[k] = s[k] + �R[k]). Then the feedforward term in the symbol estimate is

gF
TyR[k] =

NFX
n=0

gF [n]yR[k � n]

=

NFX
n=0

gF [n] (s[k � n] + �R[k � n]) ; (11)

where we recall thatgF is real for this discussion. That is, the feedforward term in the equalizer output only depends on
the symbolss[k]; s[k � 1]; : : : ; s[k � NF ]. When there is multipath interference, the feedforward term will depend on
symbols covering a wider time-span, but since we may encounter a channel where the multipath is negligible, we may
only considers[k]; s[k � 1]; : : : ; s[k �NF ] as candidates for the symbol to estimate. Therefore, we estimate the symbol
s[k �K], where0 � K � NF , and call this symbol thecursor. Since there is a one-to-one correspondence between the
candidate symbols and the taps in the feedforward section, we often identify the cursor by the corresponding feedforward
tap. This definition of the cursor is consistent with standard DFE theory and practice.

We now find the equalizer by minimizing the mean-square error (MSE), where

MSE = Ef(s[k �K]� ŝ[k �K])2g

= Es � 2gFC
TrsyC + 2gFC

TRyCsBgB + gFC
TRyCyCgFC + EsgB

TgB (12)



with Es = Ef(s[k])2g, rsyC = Efs[k�K]yC [k]g,RyCsB = EfyC [k]sB
T [k�K�1]g, andRyCyC = EfyC [k]y

T
C [k]g.

Here we have made use of the expressionsRsBsB = EfsB [k]sB
T [k]g = EsINB andrssB = Efs[k �K]sB [k]g = 0.

Minimization of this expression yields11

gFC =

�
RyCyC �

1

Es
RyCsBRyCsB

T

�
�1

rsyC (13)

gB = �
1

Es
RyCsB

TgFC ; (14)

where

rsyC = EsHC�K+Lha (15)

RyCyC = EsHCHC
T +N0QCQC

T (16)

RyCsB = EsHC�K : (17)

The vector�K+Lha contains all zeros except for a one in elementK + Lha + 1. The matrix�K is defined by

�K =

2
4 0(Lha+K+1)�NB

INB
0(NF+Lhc�K�NB)�NB

3
5 (18)

when0 � K � Lhc +NF �NB and

�K =

�
0(Lha+K+1)�(NF+Lhc�K) 0(Lha+K+1)�(K+NB�NF�Lhc)

INF+Lhc�K 0(NF+Lhc�K)�(K+NB�NF�Lhc)

�
(19)

whenLhc +NF �NB < K � Lhc +NF � 1. Here,0m�n is a zero matrix of sizem� n andIn is the identity matrix
of sizen� n. An alternative expression for the complex equalizer which we will find useful is

�
RyCyC RyCsB

RyCsB
T RsBsB

� �
gFC
gB

�
=

�
rsyC
rssB

�
; (20)

whereRsBsB = EsINB andrssB = 0.

The derivation of the real equalizer is similar with the result that

gF =

�
RyRyR �

1

Es
RyRsBRyRsB

T

�
�1

rsyR (21)

gB = �
1

Es
RyRsB

TgFR; (22)

where

rsyR = EsHR�K+Lha (23)

RyRyR = EsHRHR
T +N0

�
QRQR

T +QIQI
T
�

= EsHRHR
T +N0INF+1 (24)

RyRsB = EsHR�K : (25)

The alternative expression for the real equalizer is
�
RyRyR RyRsB

RyRsB
T RsBsB

� �
gF
gB

�
=

�
rsyR
rssB

�
: (26)



4. ADAPTIVE ALGORITHMS

4.1. Conjugate Gradient Algorithm
Since the conjugate gradient algorithm solves equations of the formRg = r, the algorithm requires estimates ofR and
r. In this study, we estimate the components ofR andr in Eqs. 20 and 26 using a running average. That is, to estimate
Ruv = Efu[n]vT [n]g at timek, we use the expression

Ruv [k] =
1

k + 1

�
kRuv [k � 1] + u[k]vT [k]

�
: (27)

This estimate has infinite memory and is only appropriate in a situation where the channel is static.

The adaptive conjugate gradient algorithm used here is identical to that described by Chang and Willson9 with two
exceptions. The first is our use of infinite memory matrix averaging as described above. The second difference is our
use of the Hestenes-Stiefel formula for the calculation of the conjugate direction step size�k.12 The adaptive CG
algorithm used is listed in Algorithm 1 where the conjugate direction vectorb[k] is reset to the negative of the estimated

Algorithm 1 Adaptive Conjugate Gradient Algorithm

RyCyC [0] = RyCyC0, RyCsB [0] = RyCsB0, rsyC [0] = rsyC0,
RsBsB [0] = EsINB , rssB [0] = 0
g[0] = g0, t[0] = 0
for k = 1; : : : do

UpdateRyCyC [k], RyCsB [k], RsBsB [k], rsyC [0], andrssB [k]
t[k] = R[k]g[k � 1]� r[k]
if k = 1 or k mod k0 = 1 then
b[k] = �t[k]

else

�k =
(t[k]� t[k � 1])

T
t[k]

(t[k]� t[k � 1])
T
p[k � 1]

b[k] = �t[k] + �kb[k � 1]
end if

�k =
bT [k]t[k]

bT [k]R[k]b[k]
g[k] = g[k � 1] + �kb[k]

end for

gradientt[k] after everyk0 steps. Algorithm 1 has been written for the complex equalizer, whereg =
�
gFC

T gB
T
�T

,

r =
�
rsyC

TrssB
T
�T

, and

R =

�
RyCyC RyCsB

RyCsB
T RsBsB

�
; (28)

but it is also applied to the real equalizer with similar definitions based on Eq. 26.

The initial valuesRyCyC0, RyCsB0, andrsyC0 (or RyRyR0, RyRsB0, andrsyR0 for the real equalizer) in the first
step of the algorithm may be zero matrices. However, if a channel estimate is available, Eqs. 15-17 (23-25) suggest that
convergence time may be reduced by initializing using an estimate of the channelh. With the infinite memory averaging
in Eq. 27, the contribution of the initial value to the matrix average decreases immediately as1=k. In a more practical
forgetting factor implementation as described by Chang and Willson,9 the contribution of the initial value will decrease
more slowly. Using the finite data windowing approach of the same paper, the contribution of the initial value can be
subtracted at a linear rate until there is no contribution left. To obtain a similar effect using the running average approach
in Eq. 27, we use the modified averaging

Ruv [k] =
1

k + kw + 1

�
(k + kw)Ruv [k � 1] + u[k]vT [k]

�
; (29)

wherekw is the initial weighting ofRuv0.



4.2. Recursive Least Squares Algorithm

The RLS algorithm solves equations of the formRg = r by updating the inverse of the matrixR. The algorithm used13

is a standard RLS algorithm and is given in Algorithm 2, wherey[k] =
�
yC

T [k] sB
T [k �K � 1]

�T
(yR[k] instead of

Algorithm 2 Adaptive RLS Algorithm
P [0] = �I , g[0] = g0
for k = 1; : : : do
b[k] = P [k � 1]y[k]

t[k] =
b[k]

�+ yT [k]b[k]
�k = ~s[k �K]� gT [k � 1]y[k]
g[k] = g[k � 1] + �kt[k]
P [k] = 1

�

�
P [k � 1]� tT [k]y[k]P [k � 1]

�
end for

yC [k] for the real equalizer),� is the forgetting factor, and� is the initialization factor forP , the inverse ofR. The
symbol~s[k � K] used in calculating the error�k is a known, correct symbol when training the equalizer and a sliced
decision when in decision-directed mode.

Since the RLS algorithm updates the inverse ofR, there is no obvious way to initializeP using a channel estimate.
Initialization of the equalizerg is possible, but this provides no advantage over the CG algorithm since the same can be
done there.

4.3. Least Mean Square Algorithm

We use a standard LMS algorithm13 with step size� which is shown as Algorithm 3. As in the RLS algorithm, the symbol

Algorithm 3 Adaptive LMS Algorithm

g[0] = g0
for k = 1; : : : do
ŝ[k �K] = gT [k � 1]y[k]
g[k] = g[k � 1] + �(~s[k �K]� ŝ[k �K])y[k]

end for

~s[k � K] used in calculating the error�k is a known, correct symbol when training the equalizer and a sliced decision
when in decision-directed mode.

5. SIMULATIONS

The equalizers were simulated using four channels withM = 4 paths in each channel. The gains of each path were
randomly generated from uncorrelated complex Gaussian random variables with mean zero and variance 2. The maximum
gain was normalized to one and located at zero delay. Three random delays were generated via independent uniform
random variables across a delay spread of�30 to 250 symbols, relative to zero delay, and the remaining normalized
gains were assigned to these paths. Table 1 shows the delays, relative gains, and phases of the paths in the four channels
simulated. The complex pulse shape at the transmitter and receiver had an excess bandwidth of0:11521 and was modeled
using 61 samples centered at the main tap (i.e.,Lq = 30). The equalizers had 101 feedforward taps and 300 feedback taps
and the cursor was positioned at tap 76 in the feedforward section.

All simulations were performed at a received SNR of30dB, where the SNR is defined at the input to the receiver
matched filter. The SNR is calculated as

SNR =
Es kck

2

N0
; (30)



Table 1: Simulated channel delays in symbol periods, relative gains in dB, and phases in degrees.

Main Path Path 2 Path 3 Path 4Chan
Delay Gain Phase Delay Gain Phase Delay Gain Phase Delay Gain Phase

1 0 0 0 19.4 -6.45 291.2 176.7 -0.97 303.5 228.1 -0.28 245.0
2 0 0 0 -13.8 -7.98 146.8 84.9 -2.39 285.2 220.2 -5.59 342.8
3 0 0 0 -27.2 -13.86 91.5 68.8 -4.97 289.0 197.7 -4.67 182.5
4 0 0 0 8.9 -8.33 328.3 25.6 -4.99 299.1 26.8 -1.67 0.8
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Figure 2. Complex (left) and real (right) equalizer convergence curves for CG, RLS, and LMS averaged across four channels at a
received SNR of30dB.

whereEs = 21, c = [ c[�Lha + Lq]; : : : ; c[Lhc � Lq] ]
T , and the noise power is calculated using the effective system

bandwidth.

The LMS and RLS parameters were chosen by simulating various parameter combinations and choosing the param-
eters which yielded the fastest stable convergence. The LMS step size was� = 10�5, and the RLS parameters were
� = 0:999 and� = 10�3. In the CG algorithm, the conjugate direction was re-initialized afterk0 = 502 steps for the
complex equalizer andk0 = 401 steps for the real equalizer. In both cases,k0 is equal to the dimension of theR matrix,
as suggested in Chong and Z˙ak.12 For all algorithms, the mean-square error was calculated using the actual channel and
noise parameters according to Eq. 12 and then normalized to the constellation varianceEs.

In the first set of results, we compare the convergence rates of CG, RLS, and LMS without any special initialization
(other than the diagonal loading ofP [0] for RLS as described above). The equalizer weights are initialized to zeros
except for a one at the cursor location (tap 76) in the feedforward section. The feedback tap delay line contains zeros
when training begins. For the CG algorithm,RyCyC0, RyCsB0, andrsyC0 (RyRyR0, RyRsB0, andrsyR0) are zero
matrices;RsBsB [0] andrssB [0] are initialized as noted in Algorithm 1. The results for the complex and real equalizers
are shown in Fig. 2 for a received SNR of 30dB. The results have been averaged over all four channels. Both the RLS and
CG algorithms converge much faster than the LMS algorithm. The CG and RLS algorithms have similar early descents
except for the initial rise in MSE for the CG algorithm. The CG algorithm has slower convergence after the initial fall
in MSE. Note, however, than none of the three algorithms converges within the 704 training symbols available in a VSB
data field.

Next, we compare several methods of initializing the CG algorithm. It is possible to initialize the equalizer tap weights,
the correlation matrices and vectors, and we may initialize the feedback tap contents to zero or fill the taps with training
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Figure 3. Convergence of complex CG equalizers initialized using actual channels at a received SNR of30dB. The plot on the left
is for an initial weight ofkw = 100. The plot on the right is for an initial weight ofkw = 10. The letters refer to the initialization
descriptions in the text.

symbols. When we fill the feedback taps with training symbols, we use the first 300 training symbols, so these symbols
are no longer available to train the equalizer. We simulated five different initializations:

A. Minimal initialization. This is identical to the first set of results above.

B. Matrix initialization. In this case, we initialize the correlation matrices using the actual channelh and noise variance
N0.

C. Feedback tap initialization. Here, we fill the feedback taps with training symbols prior to beginning adaptation. The
correlation matrices are not initialized using the channel.

D. Matrix and feedback tap initialization. This is a combination of cases B and C. We initialize the matrices using the
actual channel and noise variance, and we fill the feedback taps with training symbols.

E. Matrix and feedback tap initialization with equalizer tap weight initialization. This case is identical to case D
except, in addition, we provide a simple initialization of the equalizer tap weights using the negative of the post-
cursor portion of the channel.

In addition to these initializations, we also simulated the CG solution12 of Rg = r and calculated the MSE as a function
of the iteration. We call this solution indirect CG (ICG) since it could be implemented as an indirect adaptation of the
equalizer taps by tracking the channel estimate and calculating the tap weights by formingR andr from the channel
estimate. Finally, we reiterate that performing matrix initialization of the RLS algorithm similar to that described in B
would be difficult because the matrix updated by the RLS algorithm is the inverse of the correlation matrix.

The results of this simulation for the complex equalizer are shown in Fig. 3 along with the RLS results from the
previous simulation. Results for the real equalizer are similar and are not shown here. The matrix initialization alone
(B) does not yield a large improvement in the convergence time. The MSE initially drops steeply but then rises before
falling again. This can be attributed to the zeros initially in the feedback taps which initially direct the matrix averages
away from their initial values. Feedback tap initialization (C) does yield a significant improvement in convergence time,
but a flat region remains in the MSE. This region can be attributed to the time it takes for the matrix averages to stabilize.
As a result, the combination of B and C, shown as D, removes the flat region found in feedback tap initialization and a
vast improvement is seen over minimal initialization (A). With an initial weighting ofkw = 100, the initial convergence
trajectory approaches that of ICG. Even withkw = 10, the normalized MSE quickly reaches10�2. When the equalizer
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Figure 4. Comparison of estimated and actual channel impulse responses. The estimated responses were obtained at a received SNR
of 30dB.

Table 2: Comparison of actual and estimated noise variances atSNR = 30dB.

Noise VarianceChannel
Actual Estimated

1 0:03105 0:02825
2 0:02117 0:02150
3 0:01787 0:01944
4 0:02642 0:02543

taps are also initialized (E), there is a slight further improvement in convergence time. This is most easily seen when
kw = 10.

Finally, we test our initialization scheme using an estimated channel. We simulated the equalizer using the same four
channels, but estimated the channel using the scheme described byÖzen, et al.7 The channel estimation is performed
in two steps using symbol-spaced received samples prior to the receiver matched filter. In the first step, the received
samples are correlated with the stored training sequence and thresholding is applied in order to determine the locations of
the multipath delays. The purpose of the second step is to incorporate the transmitted pulse shapeq(t) into the channel
impulse response. To do this, we locate three copies ofq(t) shifted by one-half of a symbol period around each multipath
location and estimate complex scaling factors using a modified least squares approach. Further details may be found in
the reference. Figure 4 compares the actual channel impulse response with the estimated impulse response for channel 1.
The estimated impulse response matches the actual response very closely. These results are representative of the results
for all four channels.

Using the channel estimate, an estimate of the noise variance is also found. This is done by reconstructing the received
signal using the channel estimate and the training sequence. Only samples which depend on the training sequence and
no other symbols are reconstructed so that the reconstructed samples are essentially a noiseless estimate of the received
signal. The reconstructed signal is then subtracted from the actual received signal, and the squared magnitudes of the
differences are averaged and divided by two to yield the estimate of the noise varianceN0. Table 2 compares the actual
and estimated noise variance for all four channels at a received SNR of30dB. Note that the noise variance changes with
channel conditions since, in the received SNR, the signal includes the contributions from all four paths.

The channel estimate is used to initialize the correlation matrices in the equalizer prior to adaptation and, for case
E, to initialize the feedback tap weights. We simulated initialization cases D and E for the complex equalizer and the
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Figure 5. Convergence of complex CG equalizers initialized using channel estimates at a received SNR of30dB. The convergence
curves for initialization with the actual channels and the estimated channels are compared.

results are compared with the previous results using the actual channel in Fig. 5. For bothkw = 10 andkw = 100, there
is little difference between the convergence rates when the equalizers are initialized with the estimated channels and the
convergence rates using the actual channels. Withkw = 100, the equalizer is able to converge within the available number
of training symbols in a single VSB synchronization segment without resorting to blind adaptation techniques.

6. CONCLUSIONS

We have shown that the adaptive conjugate gradient and RLS algorithms have similar convergence rates without ini-
tialization in an 8-VSB system. Since the conjugate gradient algorithm is easily initialized when a channel estimate is
available, we explored several methods for initialization. We found that initializing the correlation matrices while ensur-
ing that the feedback taps contained known training symbols yielded a significant improvement in convergence time —
much more than either technique yielded on its own. In addition, initializing the equalizer feedback tap weights using
the post-cursor portion of the channel estimate provided an additional small improvement in convergence time. The im-
proved convergence times are an advantage for the conjugate gradient algorithm since convergence is possible within the
available training symbols in an 8-VSB field. Correlation matrix initialization of the RLS algorithm is difficult because
the algorithm updates the inverse of the correlation matrix.

Future work will center on implementing the initialization scheme presented here using finite length data windowing
and forgetting factor correlation matrix averaging. In addition, we will work to reduce the computational complexity of
the conjugate gradient algorithm.
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