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THE SHANNON PARADIGM
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The source encoder try to eliminate the redundancy available in the

source.

The aim of the channel encoder is to protect the message against the

channel perturbations by adding redundancy to the compressed message

The modulator performs a mapping into the euclidean space.
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Some Citations
• All codes are good, except for the ones we can think of.

• Never discard information prematurely that may be useful inmaking a

decision until all decisions related to that information have been completed.

(Andrew Viterbi)

• It is a capital mistake to theorize before you have all the evidence. It biases

the judgement. (Sir Arthur Conan Doyle)
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BINARY SYMETRIC CHANNEL
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This memoryless channel is defined by the transition probability :

P (Y = 0|X = 1) = P (Y = 1|X = 0) = p

P (Y = 0|X = 0) = P (Y = 1|X = 1) = 1 − p (1)
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AWGN CHANNEL
• Equivalent model (after matched filter and sampling) :

yi = xi + ni where xi = ±
√

Es (BPSK modulation)

ni is a centered random gaussian variable with varianceσ2 = N0

2

• The ML detector performs a simple threshold.
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with erfc(a) =
2√
π
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PERFORMANCE

• BER = f(Eb/N0) :
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BINARY SYMETRIC CHANNEL

When using binary modulation, the BSC channel can be seen as an

AWGN channel+ decision

the probability transition is given by (without channel coding)

p =
1

2
erfc

{
√

EB

N0

}

the probability transition is given by (with rateR channel coding)

p =
1

2
erfc

{
√

REB

N0

}

(2)
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CHANNEL CAPACITY

definition : The channel capacity is the maximum of the mutual information.

C = max I(X, Y ) with I(X, Y ) = H(X) − H(X|Y ) (3)

C in Shannon/symbol

C ′ capacity per time unitC ′ = C × Ds
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CHANNEL CODING THEOREM

theorem : There exist a channel coding allowing a communication withas

small an error probability as desired if and only if :

H(U) < C in Sh/symb (4)

H(U) is the entropy at the input of the channel encoder

If we multiply H(U) andC by the symbol rateDS we have

H(U) × DS < C × DS (5)

DI < C ′ Sh/sec (6)
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BSC CHANNEL CAPACITY

ForP (X = 0) = P (X = 1) = 1/2:

I(X, Y ) = 1 + p log2(p) + (1 − p) log2(1 − p) (7)
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AWGN CHANNEL CAPACITY

The relation between the transmitted vectorx and the received vectory of

dimensionD is

y = x + n (8)

Let n = (n1, n2, . . . , nD) the noise vector where each element are gaussian,

independent with varianceσ2
n.

Let x = (x1, x2, . . . , xD) the transmitted vector where each element are

gaussian, independent with varianceσ2
x (in order to maximize the mutual

information).
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AWGN CHANNEL CAPACITY

ForD → ∞, we can show that the norm of the noise vector is concentratedon

the surface of theD dimension sphere with radius
√

Dσ2
n

The norm of the vectorx is concentrated on the surface of theD dimension

sphere with radius
√

Dσ2
x

The norm of the vectory is concentrated on the surface of theD dimension

sphere with radius
√

D(σ2
x + σ2

n).

e

)( 22
nxD σσ +

2
nDσ
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AWGN CHANNEL CAPACITY

Let M the number of distinguishable vectorsx .

In order to guaranty a communication without error, the total volume of the

M noise spheres should be smaller than the volume of the spherewith radius
√

D(σ2
x + σ2

n) :

M ≤ V (
√

D(σ2
x + σ2

n), D)

V (
√

D.σ2
n, D)

≤ (D(σ2
x + σ2

n))D/2

(D.σ2
n)D/2

≤
(

1 +
σ2

x

σ2
n

)D/2

(9)
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AWGN CHANNEL CAPACITY

H(U) =
1

D
log2 M ≤ C (10)

Consequently :

C =
1

2
log2

(

1 +
σ2

x

σ2
n

)

(11)

For a bandwithB, D = 2BT (T is the transmission duration). The noise

power isN = 2Bσ2
n and the signal power isP = 2Bσ2

x.

C =
1

2
log2

(

1 +
P

N

)

Sh/dim (12)

C ′ = B log2

(

1 +
P

N

)

Sh/s (13)
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AWGN CHANNEL CAPACITY
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SPECTRAL EFFICIENCY
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SPHERE PACKING BOUND

• Eb/N0 versusK for rateR = 1/2 andR = 1/3
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CHANNEL CODING
• The aim of the channel coding is to protect the message against the channel

perturbations by adding redundancy.

• Instead of using a random coding, we will use codes with an algebraic

structure such as the linearity to simplify the encoding andalso the decoding.

There are three families of error correcting codes

� The linear block codes

� The convolutional codes

� The concatenated codes
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BINARY LINEAR BLOCK CODES

Let u = [u1, u2, . . . , uK ] an information vector composed ofK information

bits

Let c = [c1, c2, . . . , cN ] the associated codeword composed ofN bits.

We have the matrix relation betweenu andc:

c = uG (14)

whereG is the generator matrix of the encoder of dimensionK × N .

G =
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






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
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g2

...
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















=

















g11 g12 . . . g1N

g21 g22 . . . g2N
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...

...
...

gK1 gK2 . . . gKN

















(15)

REVIEW OF ERROR CORRECTING CODES – p.19/40



PROPERTIES AND DEFINITIONS

Rate : the rateR of a block code(N, K) is R = K
N

Hamming distance: let c1 andc2 be two codewords of the binary code

C, the Hamming distancedH(c1, c2) is the number of different bits

between the two codewords.

Example :c1 = [001100] etc2 = [001111], dH(c1, c2) = 2

Hamming weight : the Hamming weightw(c) of a binary block codec
is the number of non zero bits of this codeword.

Minimum distance : The minimum distancedmin of the codeC is the

number of different bits between the two closest codewords :

dmin = min
i,j,i 6=j

dH(ci, cj) = min
i,i 6=0

w(ci) (16)
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ERROR CORRECTION CAPACITY
A hard input decoder can decode untile bit errors with :

e =

⌊

dmin − 1

2

⌋

(17)

dmin


e
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PARITY CHECK MATRIX

Each codewordx of C is orthogonal to the parity check matrixH :

cHT = 0

Since this relation is true for all the codewords, we have

GHT = 0

Each line of the parity check matrix is associated to a paritycheck equation
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HARD DECODING OF BLOCK
CODES

The received wordr is the modulo 2 summation between the

transmitted codewordx and the error vectore

r = c + e

syndrome decoding

s = rH T

= cHT + eHT

= eHT since cHT = 0 (18)
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SOFT DECODING OF BLOCK
CODES

A binary block code can be represented graphically using a trellis.

Exemple : Hamming code (7,4)

To perform the soft decoding we can use the Viterbi algorithm

Another soft decoding algorithm : Chase algorithm
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WEIGHT ENUMERATOR FUNC-
TION

Definition 1 : the weight enumerator function (WEF) of a binary block code

(N, K) is given by :

A(D) =

N
∑

d=0

AdD
d (19)

whereAd is the number of codewords of weightd.
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OPTIMAL DETECTION
• Let x be the transmitted vector over a memoryless stationary discrete

channel with conditional probability density functionp(y/x) andy be the

received vector.

• A maximum a posteriori (MAP) search among all the possible messagesx,

the estimated messagex̂ with the highestPr(x|y).

x̂ = arg max
x

Pr(x|y) (20)

• A maximum likelihood (ML) search among all the possible messagesx, the

estimated messagêx with the highestp(y|x).

x̂ = arg max
x

p(y|x) (21)
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OPTIMAL DETECTION

• Using Bayes rule, we have :

Pr(x|y) =
p(y|x)Pr(x)

p(y)
(22)

• Equiprobable messagesV MAP detector= ML detector.
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OPTIMAL DETECTION
BSC channel case

p(y|x) = pdH(y,x)(1 − p)N−dH(y,x) = (1 − p)N

(

p

1 − p

)dH(y,x)

(23)

wheredH(y,x) is the Hamming distance betweeny andx. Since

0 ≤ p ≤ 0.5 we have0 < p
1−p < 1.

The maximisation ofp(y|x) is equivalent to the minimization ofdH(y,x).

WERhard ≤
N
∑

i=e+1

(N

i

)

pi(1 − p)N−i

≤ 1 −
e
∑

i=0

(N

i

)

pi(1 − p)N−i

e is the error correction capacity of the code
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OPTIMAL DETECTION
AWGN channel case
After matched filter and sampling we have :

y = x + n (24)

with xi = ±
√

REb (bipodal modulation) andni gaussian random variable

with varianceσ2 = N0

2 .

p(yi|xi) =
1√

2πσ2
exp

{

− (yi − xi)
2

2σ2

}

(25)

x̂ = arg min
x

N−1
∑

i=0

(yi − xi)
2 (26)
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PAIRWISE ERROR PROBABILITY

• Let xi andxj be two codewords. The euclidian distance between them is

d(xi, xj). For the AWGN channel, the probabilityPr(xi → xj) thaty be

closer toxj thanxi assumingxi is transmitted is given by :

Pr(xi → xj) =
1

2
erfc

(

d(xi, xj)

2
√

N0

)

(27)

If the Hamming distance between two codewordsxi andxj is d, their

euclidian distance is2
√

dREb whereR is the rate of the code.

Then we have :

Pr(xi → xj) =
1

2
erfc

(

√

dR
Eb

N0

)

(28)
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WORD ERROR PROBABILITY

Using the union bound, we obtain the upper bound on the word error

probability (WER) of the ML decoder on AWGN channel associated to the

linear block code(N, K) :

WER ≤ 1

2

N
∑

d=dmin

Aderfc

(

√

dR
Eb

N0

)

whereAd is the number of codewords of weightd.
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SOFT AND HARD DECODER WER
PERFORMANCE

• hard decoding

WERhard ≤ 1 −
e
∑

i=0

(N

i

)

pi(1 − p)N−i

e error correction capacity

p =
1

2
erfc

(
√

REb

N0

)

(29)

• soft decoding

WERsoft ≤
1

2

N
∑

d=dmin

Aderfc

(

√

dR
Eb

N0

)
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SOFT AND HARD DECODER WER
PERFORMANCE

WER = f(Eb/N0) of a transmission chain using an Hamming code (7,4)and

a Golay code (23,12).
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• We obtained about 2 dB gain using soft input decoding compared to hard

input decoding.
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CODING GAIN
• According to the channel capacity, it is theoretically possible to obtain a

transmission without error forEb/N0 = 0dB using a rate 1/2 code.

• The coding gain is the signal to noiseEB/N0 difference between a

transmission chain with and without channel code.
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CONVOLUTIONAL CODES
A convolutional code transforms a semi infinite sequence of information
words into a semi infinite sequence of codewords
u : information word sequence of dimensionk

u = u0, u1, u2, . . . with ui = [u1
i , u

2
i , ..., u

k
i ]

x : codeword sequence of dimensionn

c = c0, c1, c2, . . . with ci = [c1
i , c

2
i , ..., c

n
i ]

The rate of the convolutional code iskn .
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CONVOLUTIONAL CODES
Example : non recursive convolutional encoderk = 1, n = 2 M = 2

coder
convolutionnal

R=1/2

u x

0u1u2u�
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0c
2
0c

1
1c
2
1c

1
2c
2
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D D
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�




�

c1
i = ui + ui−1 + ui−2

c2
i = ui + ui−2
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CONVOLUTIONAL CODES
Example : recursive convolutional encoderk = 1, n = 2 M = 2
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STATE TRANSITION DIAGRAM
The internal state of the encoder at timei is defined by a vectorsi of

dimensionM : si = [s1i, s2i, ...sMi]. sji is the state at timei of thej-th

memory cell.

Transition diagram for the non recursive convolutional coder (7,5) of rate 1/2
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Each branch is labelled with the output bits ( here c1i and c2i). The dashed

and continuous lines correspond to an input bit 0 and 1 respectively.
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ELEMENTARY TRELLIS

From the state transition diagram, it is possible to draw the elementary trellis

of the convolutional code. Each branch b links a starting state s−(b) to an

ending state s+(b).
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TRELLIS DIAGRAM
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On each branch we labelled the bits c1i and c2i. The continuous and dashed

lines correspond to ui = 1 and ui = 0 respectively .
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