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ABSTRACT

We provide an iterative and a non-iterative channel impulse response (CIR) estimation algorithm for communication re-
ceivers with multiple-antenna. Our algorithm is best suited for communication systems which utilize a periodically trans-
mitted training sequence within a continuous stream of information symbols, and the receivers for this particular system are
expected work in a severe frequency selective multipath environment with long delay spreads relative to the length of the
training sequence. The iterative procedure calculates the (semi-blind)Best Linear Unbiased Estimate(BLUE) of the CIR.
The non-iterative version is an approximation to the BLUE CIR estimate, denoted by a-BLUE, achieving almost similar
performance, with much lower complexity. Indeed we show that, with reasonable assumptions, a-BLUE channel estimate
can be obtained by using a stored copy of a pre-computed matrix in the receiver which enables the use of the initial CIR
estimate by the subsequent equalizer tap weight calculator. Simulation results are provided to demonstrate the performance
of the novel algorithms for 8-VSB ATSC Digital TV system. We also provide a simulation study of the robustness of the
a-BLUE algorithm to timing and carrier phase offsets.

Keywords: channel estimation, least squares, best linear unbiased estimator, digital television, multi-antenna receivers,
8-VSB

1. INTRODUCTION

For the communications systems utilizing periodically transmitted training sequence,least-squares(LS) based channel
estimation or thecorrelationbased channel estimation algorithms have been the most widely used two alternatives.1 Both
methods use a stored copy of the known transmitted training sequence at the receiver. The properties and the length of
the training sequence are generally different depending on the particular communication system’s standard specifications.
However most channel estimation schemes ignore thebaseline noiseterm which occurs due to the correlation of the stored
copy of the training sequence with the unknown symbols adjacent to transmitted training sequence, as well as the additive
channel noise.1, 2 In the sequel, we provide (semi-blind)Best Linear Unbiased Estimate(BLUE) and approximate BLUE
(a-BLUE) channel estimators for communication systems using a periodically transmitted training sequence. Our novel
CIR estimation algorithms can be considered assemi-blindtechniques since these methods take advantage of the statistics
of the data.3 Although the examples following the derivations of the BLUE and the a-BLUE channel estimators will be
drawn from the ATSC digital TV 8-VSB system,4 to the best of our knowledge it could be applied with minor modifications
to any digital communication system with linear modulation which employs a periodically transmitted training sequence.
The novel algorithm presented in the sequel is targeted for the systems that are desired to work with channels having long
delay spreadsLd; in particular we consider the case where(NT + 1)/2 < Ld < NT , whereNT is the duration of
the available training sequence. For instance the 8-VSB digital TV system has 728 training symbols, whereas the delay
spreads of the terrestrial channels have been observed to be at least 400-500 symbols long.5, 6 The a-BLUE algorithm can
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be used as an initializer to the BLUE iterations,7 or as a stand-alone alternative8 approach that produces results of nearly
the same quality as the results produced by the BLUE algorithm while at the same time requiring much less computational
complexity (i.e., requiring about the same number of multiplications necessary to implement ordinary least squares) and
having storage requirements similar to that of ordinary least squares.

1.1. Overview of Generalized Least Squares

Consider the linear model

y = Ax + ν (1)

wherey is the observation (or response) vector,A is the regression (or design) matrix,x is the vector of unknown pa-
rameters to be estimated, andν is the observation noise (or measurement error) vector. Assuming that it is known that
the random noise vectorν is zero mean, and is correlated, that is Cov{ν} = Kν ≡ 1

2E{ννH} 6= σ2
νI, we define the

(generalized) objective function for the model of (1) by

JGLS(x) = (y −Ax)HK−1
ν (y −Ax). (2)

The least squares estimate that minimizes Equation (2) is

x̂gls = (AHK−1
ν A)−1AHK−1

ν y, (3)

The estimator of (3) is called thebest linear unbiased estimate(BLUE)9 among alllinear unbiased estimators if the noise
covariance matrix isknownto be Cov{ν} = Kν . The estimator of (3) is called theminimum variance unbiased estimator
(MVUE) amongall unbiased estimators (not only linear) if the noise isknownto beGaussianwith zero mean and with
covariance matrixKν , that isx̂ols is called MVUE if it is known thatν ∼ N (0, Kν).

2. DATA TRANSMISSION MODEL

Let NA ≥ 1 denote the number of antennae used at the receiver. Then the baseband symbol rate sampled receive filter
output forith antenna is given by

yi[n] ≡ yi(t)|t=nT =
∑

k

Ikhi[n− k] + νi[n]

=
∑

k

Ikhi[n− k] +
∑

k

ηi[k]q∗[−n + k], (4)

for 1 ≤ i ≤ NA, where

Ik =
{

ak, 0 ≤ k ≤ N − 1
dk, N ≤ n ≤ N ′−1,

}
∈A≡{α1,· · · , αM} (5)

is theM -ary complex valued transmitted sequence,A ≡ {α1,· · · , αM} ⊂C1, and{ak} ∈ C1 denote the firstN symbols
within aframeof lengthN ′ to indicate that they are the known training symbols;νi[n] = ηi[n]∗q∗[−n] denotes the complex
(colored) noise process after the (pulse) matched filter, withηi[n] being a zero-mean white Gaussian noise process with
varianceσ2

ηi
per real and imaginary part;hi(t) is the complex valued impulse response of the composite channel seen by

the ith antenna including pulse shaping transmit filterq(t), the physical channel impulse responseci(t), and the receive
filter q∗(−t), and is given by

hi(t) = q(t) ∗ ci(t) ∗ q∗(−t) =
L∑

k=−K

ci,kp(t− τi,k), (6)

with p(t) = q(t) ∗ q∗(−t) is the convolution of the transmit and receive filters whereq(t) has a finite support of
[−Tq/2, Tq/2], and the span of the transmit and receive filters, is an even multiple of the symbol period,T ; that is
Tq = NqT , Nq = 2Lq ∈ Z+. {ci,k} ⊂ C1 denote complex valued physical channel gains, and{τi,k} denote the



multipath delays, or the Time-Of-Arrivals (TOA). It is assumed that the time-variations of the channel is slow enough that
ci(t) can be assumed to be a static inter-symbol interference (ISI) channel throughout the training period with the impulse
response

ci(t) =
L∑

k=−K

ci,kδ(t− τi,k) (7)

for 0 ≤ t ≤ NT , whereN is the number of training symbols. The summation limitsK andL denote the number of
maximum anti-causal and causal multi-path delays respectively. The TOAs,τi,k arenotassumed to be at integer multiples
of the sampling periodT . It is assumed that the time-variations of the channel is slow enough thatc(t) can be assumed to
be a static inter-symbol interference (ISI) channel, at least throughout the training period.

Without loss of generality, the symbol rate sampled composite CIR corresponding toith antenna element,hi[n], can be
written as a finite dimensional vector

hi = [hi[−Na], · · · , hi[−1], hi[0], hi[1], · · · , hi[Nc]]T (8)

whereNa andNc denote the number of anti-causal and causal taps of the channel, respectively, andLd = (Na +Nc +1)T
is the delay spread of the channel (including the pulse tails).

In the sequel the sampled matched filter output signal forith antenna,yi[n], will be used extensively in vector form,
and to help minimize introducing new variables, the notation ofyi,[n1:n2] with n2 ≥ n1, will be adopted to indicate the
column vector

yi,[n1:n2] = [yi[n1], yi[n1 + 1], · · · , yi[n2]]T .

Same notation will also be applied to the noise variablesηi[n] andνi[n].

The receive (pulse matched) filter output forith antenna, which includesall the contributions from the known training
symbols (which includes the adjacent random data as well) can be written as

yi,[−Na:N+Nc−1] = (A + D)hi + νi,[−Na:N+Nc−1]

= Ahi + Dhi + Qηi,[−Na−Lq :N+Nc−1+Lq ], (9)

= Ahi + Hid + Qηi,[−Na−Lq :N+Nc−1+Lq ], (10)

where

A = T {[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]}, (11)

is a Toeplitz matrix∗ of dimension(N + Na + Nc)× (Na + Nc + 1), and

D = T {[0, · · · , 0︸ ︷︷ ︸
N

, dN , · · · , dNc+Na+N−1]T , [0, d−1, · · · , d−Nc−Na ]}, (12)

is a Toeplitz matrix which includes the adjacent unknown symbols, prior to and after the training sequence. The data
sequence[d−1, · · · , d−Nc−Na ] is the unknown information symbols transmitted at the end of the frame prior to the current
frame being transmitted.Q is of dimension(N + Na + Nc)× (N + Na + Nc + Nq) and is given by

Q =




qT 0 · · · 0
0 qT · · · 0
...

...
. ..

...
0 0 · · · qT


 (13)

∗The notation ofT {a, bT } stands for a Toeplitz matrix of dimensionM ×N with first columna = [a0, . . . , aM−1]
T and first row

b = [b0, . . . , bN−1]
T , with a0 = b0.



andq = [q[+Lq], · · · , q[0], · · · , q[−Lq]]T , and

Hi = HiS
T , (14)

h̄i = [hi[Nc], · · · , hi[1], hi[0], hi[−1], · · · , hi[−Na]]T = Jhi, (15)

J =




0 · · · 0 1
0 · · · 1 0
...

...
...

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(16)

Hi =




h̄
T
i 0 · · · 0
0 h̄

T
i · · · 0

...
...

. ..
...

0 0 · · · h̄
T
i



(N+Nc+Na)×(N+2(Na+Nc))

, (17)

andd = Sd̃, or equivalentlyd̃ = ST d, where

d̃ = [d−Nc−Na
, · · ·, d−1,01×N , dN , · · ·, dN+Nc+Na−1]T (18)

d = [d−N−Na , · · · , d−1, dN , · · · , dN+Nc+Na−1]T (19)

S =
[

INa+Nc 0(Na+Nc)×N 0(Na+Nc)

0(Na+Nc) 0(Na+Nc)×N INa+Nc

]
. (20)

whereh̄i is the time reversed version ofhi (re-ordering is accomplished by the permutation matrixJ ), andHi is of
dimension(N + Na + Nc) × (2(Nc+Na)) with a “hole” inside which is created by the selection matrixS, whereS is
(2(Nc+Na))× (N +2(Na+Nc)) dimensionalselectionmatrix which retains the random data, eliminates theN zeros in
the middle of the vector̃d.

By defining

h = [hT
1 , · · · , hT

NA
]T , (21)

y = [yT
1,[−Na:N+Nc−1], · · · ,yT

NA,[−Na:N+Nc−1]]
T , (22)

η = [ηT
1,[−Na−Lq :N+Nc−1+Lq ], · · · ,ηT

NA,[−Na−Lq :N+Nc−1+Lq ]]
T (23)

and using Equations (8) and (10) we obtain

y = Ãh + H̃d + Q̃η (24)

where

Ã = INA
⊗A, (25)

H̃ =
[
HT

1 , · · · , HT
NA

]T

, (26)

Q̃ = INA
⊗Q, (27)

andINA
is NA dimensional identity matrix,⊗ denotes the Kronecker matrix product.

2.1. Receiver Antenna Array Geometry

For a receiver employing an antenna array we will make the basic assumption that every multipath reflection reaches all the
antenna elements at the same time but with different phase angles. This assumption enables us to drop the antenna index
from the TOA’s; that is in the sequel we will useτi,k = τk for −K ≤ k ≤ L.
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Figure 1. (a) Antenna geometry used to determine the Direction-Of-Arrival (DOA) of a plane wave incident on a two element linear
array oriented alongx-axis. (b) Baseband model of a linear array oriented along thex-axis receiving a plane wave from direction{θ, φ}.

In the sequel we provide a brief derivation of the phase difference in the multipath components at each antenna element.
Considering Figure 1 it is straightforward to show that the distanced that the plane wave which is on the second antenna
has to travel to reach the first antenna is given by

d = ∆ cos θ sin φ (28)

where∆ is inter-element spacing,θ is the angle between the projection of the plane-wave normal onto thex-y plane and
thex-axis,φ is the angle between the plane-wave normal and thez-axis. The angle tuple{θ, φ} is called the Direction-
Of-Arrival (DOA). Then the phase difference,ψ(∆, θ, φ, λo), between the signal component on array element antenna two
and the reference antenna one is

ψ =
2πd

λo
=

2π∆ cos θ sin φ

λo
=

2πfo∆ cos θ sin φ

c
, (29)

whereλo = c/fo is the transmission wavelength,c is the speed of the light,3× 108 m/s,fo is the transmission frequency
in Hz. Most often the inter-element spacing∆ is taken to be multiple of wavelengthλo, that is

∆ = mλo, m ∈ R+. (30)

Then Equation (29) can be written as

ψ = 2πm cos θ sin φ (31)

wherem is expressed in terms of wavelengths.

Without loss of generality, we let the antenna number one, with the physical channel complex gains coefficientsc1 =
[c1,−K , · · · , c1,0, · · · , c1,L]T , to be the reference antenna. Then the complex valued gainsci,k for remaining antennae can
be given by

ci,k = ui(θk, φk)c1,k, 2 ≤ i ≤ NA,−K ≤ k ≤ L, (32)



whereui(θk, φk) = e−j(i−1)ψ(θk,φk). Substituting Equation (32) into (6) the composite channel impulse responses for the
remaining antennae are written as

hi(t) =
L∑

k=−K

ui(θk, φk)c1,kp(t− τk), 2 ≤ i ≤ NA, (33)

where in the case of auniform linear arrayof NA identical antennas, with identical inter-element spacing∆, and the
plane-wave assumption holds, thearray manifold

u(θk, φk) = [u1(θk, φk), u2(θk, φk), · · · , uNA
(θk, φk)]T

has the form10

u(θk, φk) = [1, e−jψ(θk,φk), · · · , e−j(NA−1)ψ(θk,φk)]T (34)

whereψ(θk, φk) = 2πm cos θk sin φk and m ∈ R+ is specified in terms of wavelengths. Combining Equations (4)
and (33) the received signal at the output of receive filter,y[n] = [y1[n], y2[n], · · · , yNA

[n]]T , in vector form is given by

y[n] =

(∑

k

L∑

l=−K

Iku(θl, φl)c1,lp(t− τl)

)∣∣∣∣∣
t=nT

+ ν[n], (35)

whereν[n] = [ν1[n], · · · , νNA [n]]T .

3. OVERVIEW OF THE BLUE CIR ESTIMATOR

For comparison purposes we first provide the well known correlation and ordinary least squares based estimators, where
correlations based estimation is denotedĥu (the subscriptu stands for theuncleanedCIR estimate) and is given by

ĥu =
1

ra[0]
Ã

H
y, (36)

with ra[0] =
N−1∑
k=0

‖ak‖2, and the ordinary least squares CIR estimate is denoted byĥc (the subscriptc stands for the

cleanedCIR estimate) and is given by

ĥc = (Ã
H

Ã)−1Ã
H

y, (37)

where “cleaning” is accomplished by removing the known sidelobes of the aperiodic correlation operation as accomplished
in (36).

We can denote the two terms on the right side of Equation (10) byv = H̃d + Q̃η. Hence we rewrite (24) as

y = Ãh + v. (38)

By noting the statistical independence of the random vectorsd andη, and also noting that both vectors are zero mean, the
covariance matrix,Kv of v is given by

Cov{v} = Kv ≡ 1
2
E{vvH} =

Ed

2
H̃H̃

H
+ Kη, (39)

whereEd is the energy of the transmitted information symbols, and equals to21 if the symbols{dk} are chosen from the
set{±1,±3,±5,±7}. Kη is the covariance of the noise vector and is given by

Kη =

{
σ2

ηQ̃Q̃
H

, if noise powers are identical on all diversity branches
diag{σ2

η1
QQH , · · · , σ2

ηNA
QQH}, if noise powers are different,

(40)



where diag{} creates diagonal matrix by placing the entries inside the curly brackets along the main diagonal.

For the model of (38) the generalized least squares objective function to be minimized is

JGLS(h) =
(
y − Ãh

)H

K−1
v

(
y − Ãh

)
. (41)

Then the generalized least-squares solution to the model of Equation (38) which minimizes the objective function ofJGLS(h)
is given by

ĥK = (Ã
H

K−1
v Ã)−1Ã

H
K−1

v y. (42)

The problem with Equation (42) is that the channel estimateĥK is based on the covariance matrixKv, which is a function
of the true channel impulse response vectorh as well as the channel noise varianceσ2

ηi
. In actual applications the BLUE

channel estimate of Equation (42) can not be exactly obtained. Hence we need aniterative technique to calculate general-
ized least squares estimate of (42) where every iteration produces an updated estimate of the covariance matrix as well as
the noise variance. Without going into the details, a simplified version of the iterations, which yield a closer approximation
to the exact BLUE CIR estimate after each step, is provided in Algorithm 1. In the intermediate steps noise variance for
each antenna is estimated by

σ̂2
ηi

=
1

2Eq(N −Na −Nc)
‖ŷi,[Nc:N−Na] − yi,[Nc:N−Na]‖2,

whereEq = ‖q‖2 and
ŷi,[Nc:N−Na] = Ȧĥi,th,

andȦ = T {
[aNc+Na , · · ·, aN−1]T , [aNc+Na , · · ·, a0]

}
. For further details regarding the BLUE algorithm, the readers are

referred to the publication by Pladdy7 et al. For details regarding the thresholding algorithms we refer the readers toÖzen8

et al.

Algorithm 1 Iterative Algorithm to obtain a CIR estimate via Generalized Least-Squares

[1] Get an initial CIR estimate using one of (36) or (37), and denote it byĥ[0];

[2] Threshold the initial CIR estimate, and denote it byĥ
(th)

[0];

[3] Estimate the noise variance on all diversity branchesσ̂2
ηi [0], and use lower part of Equation (40) to obtain the estimated noise

covariance matrix̂Kη[0]
[4]
for k = 1, . . . , Niter do

[4-a] Calculate the inverse of the (estimated) covariance matrix

K̂
−1

v [k] =

[Ed

2
H̃(ĥ

(th)
[k − 1])H̃

H
(ĥ

(th)
[k − 1]) + K̂η[k − 1]

]−1

;

[4-b] ĥK [k] = (Ã
H

K̂
−1

v [k]Ã)−1Ã
H

K̂
−1

v [k]y;

[4-c] Threshold the CIR estimatêhK [k], and denote it bŷh
(th)

[k];

[4-d] Estimate the noise variance on all diversity branchesσ̂2
ηi [k], and use lower part of Equation (40) to obtain the estimated

noise covariance matrix̂Kη[k].
end for

3.1. Approximate BLUE CIR estimation

An alternative approach may be used to produce results of nearly the same quality as the results produced by the algorithm
described in Algorithm 1 while at the same time requiring much less computational complexity (i.e., requiring about the
same number of multiplications necessary to implement Equation (37)) and having storage requirements similar to that
of Equation (37). According to this alternative, the initial least squares estimation error can be reduced by seeking an



approximation in which it is assumed that the baseband representation of the physical channelci(t) is a distortion-free (no
multipath) channel; that is

ci(t) = δ(t) (43)

which implies

hi(t) = p(t) ∗ ci(t) = pi(t). (44)

Thus we can assume that our finite length channel impulse response vector can be (initially) approximated by

h̃i = [0,· · · ,0︸ ︷︷ ︸
Na−Nq

, p[−Nq],· · · , p[0],· · · , p[Nq]︸ ︷︷ ︸
raised cosine pulse

, 0,· · · , 0︸ ︷︷ ︸
Nc−Nq

]T (45)

with the assumptions ofNa ≥ Nq andNc ≥ Nq, that is the tail span of the composite pulse shape is well confined to within
the assumed delay spread of[−NaT, NcT ]. The assumption of (45) is assumed to be valid fori = 1, 2, . . . , NA. Then
the approximation of (45) can be substituted into Equations (16-17) to yield an initial (approximate) channel convolution

matrix Ḣi and is given byḢi = ḢiS
T whereḢi is formed as in Equation (17) with̃̄hi = Jh̃i. We can also assume a

reasonable received Signal-to-Noise (SNR) ratio measured at the input to the matched filter which is given by

SNR =
Ed ‖(c(t) ∗ q(t))|t=nT ‖2

σ2
η

=
Ed ‖q‖2

σ2
η

. (46)

For instance we can assume an approximateSNR of 20dB yielding an initial noise variance of

σ̃2
η =

Ed‖q‖2
100

. (47)

All diversity branches are assumed to have the same noise power in Equation (47). Then we can obtain the approximate
two antenna multi-antenna convolution matriẋH of Equation (26) by appendinġHi matrices, and by using̃σ2

η we can
pre-calculate the initial approximate covariance matrix where the covariance matrix of the approximate channel is given by

K̃v(Ḣ) =
1
2
EdḢḢ

H
+ σ̃2

ηQ̃Q̃
H

, (48)

which further leads to the initial channel estimate of

ĥK̃ =
(
Ã

H
[K̃v(Ḣ)]−1Ã

)−1

Ã
H

[K̃v(Ḣ)]−1

︸ ︷︷ ︸
pre-computed and stored

y. (49)

Equation (49) is the resulting a-BLUE CIR estimate. The key advantage of the a-BLUE is that the matrix

(
Ã

H
[K̃v(Ḣ)]−1Ã

)−1

Ã
H

[K̃v(Ḣ)]−1

is constructed based on the initial assumptions that the receiver is expected to operate, and can bepre-computedandstored

in the receiver. By pre-computing and storing the matrix
(
Ã

H
[K̃v(Ḣ)]−1Ã

)−1

Ã
H

[K̃v(Ḣ)]−1 as in Equation (49) we

obtain a CIR estimate with much lower computational complexity than the BLUE algorithm. We also note that a-BLUE
CIR estimate can be used either as a stand-alone CIR estimator, or an initial estimate which can be used by the BLUE
algorithm; additionally it can be used as an initial CIR estimate to be used in the calculation of the tap weights of a
subsequent equalizer.

However, there is one problem with the covariance matrix of the approximate (assumed) channel. As an example
consider a simple two antenna case where we approximate bothh1 andh2 as

h̃1 = h̃2 = [0,· · · ,0︸ ︷︷ ︸
Na−Nq

, p[−Nq],· · · , p[0],· · · , p[Nq]︸ ︷︷ ︸
raised cosine pulse

, 0,· · · , 0︸ ︷︷ ︸
Nc−Nq

]T . (50)



Table 1.Simulated channel delays in symbol periods, relative gains.L = −1, K = 6, Ld ≈ (1 + 333 + 2Nq)T = 453T ≈ 44µsec,
Nq = 60.

Channel taps Delay{τk} Gain{|ck|}
k = −1 -0.957 0.7263

Main k = 0 0 1
k = 1 3.551 0.6457
k = 2 15.250 0.9848
k = 3 24.032 0.7456
k = 4 29.165 0.8616
k = 5 221.2345 0.6150
k = 6 332.9810 0.4900

The two antenna convolution matriẋH = [Ḣ
T

1 , Ḣ
T

2 ]T based on the approximation of (50) is no longer full rank, and
indeed

rank{Ḣ} = rank{Ḣ1} = rank{Ḣ2}
sinceḢ1 = Ḣ2 and both are full rank matrices. The covariance matrixK̃v(Ḣ) is full rank only due to the presence of

noise covariance matrix̃σ2
ηQ̃Q̃

H
in the expression of (48). The random data covariance matrix1

2EdḢḢ
H

part is again
not full rank. So we noticed this problem and recommend using separate CIR estimators for each channel, rather than
doing joint estimation as shown in Equation (49). Having separate estimators for each channel is equivalent to replacing

the cross termsḢ1Ḣ
H

2 andḢ2Ḣ
H

1 in 1
2EdḢḢ

H
by zero matrix. In this case we would store a single pre-computed

matrix
(
AH [K̃v(Ḣ1)]−1A

)−1

AH [K̃v(Ḣ1)]−1 (51)

and use it for all the diversity channels’ matched filter outputs separately. In (51)A is as given in Equation (11), anḋH1

is constructed as in (14). Then the individual a-BLUE channel estimates for each diversity channel can be obtained by

ĥi,K̃ =
(
AH[K̃v(Ḣ1)]−1A

)−1

AH [K̃v(Ḣ1)]−1

︸ ︷︷ ︸
pre-computed and stored

yi,[−Na:N+Nc−1], (52)

for i = 1, . . . , NA.

4. SIMULATIONS

We considered an 8-VSB4 digital TV receiver with two antennas, with one wavelength separation. 8-VSB system has a
complex raised cosine pulse shape.4 The CIR we considered is given in Table 1. The phase angles of individual paths for
all the channels are taken to bearg{ck} = exp(−j2πfcτk), k = −1, · · · , 6 wherefc = 50

Tsym
andTsym = 92.9nsec. The

simulations were run at 28dB Signal-to-Noise-Ratio (SNR) measured at the input to the receive pulse matched filter, and it
is calculated by

SNRi =
Ed ‖{ci(t) ∗ q(t)}t=kT ‖2

σ2
ηi

. (53)

Figure 2 shows the simulation results for the test channel provided in Table 1. Parts (a) and (b) show the actual CIRs for
antenna 1 and 2; parts (c) and (d) show separate a-BLUE estimates for antenna 1 and 2 respectively where we utilized
Equation (52); parts (e) and (f) show the full a-BLUE CIR estimates given by Equation (49) where both the channel
estimates are obtained jointly; parts (g) and (h) show the correlation based estimates as given by Equation (36); and parts
(i) and (j) show the least squares based estimates as given by Equation (37). For part (c-f) the assumed SNR level for each
diversity channel is 19dB.



We also note that the iterative BLUE CIR estimation algorithm is very powerful but computationally very demanding,
thus in many applications the approximate BLUE, as shown in parts (e-f), could be sufficiently acceptable as an initial
estimate. The performance measure is the normalized least-squares error which is defined by

ENLS =
‖hi − ĥi‖2

Na + Nc + 1
, (54)

for i = 1, . . . , NA. Approximate BLUE significantly outperforms the correlation and ordinary least squares based CIR
estimation algorithms, but it has virtually identical computational complexity and storage requirement.
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Figure 2. Parts (a) and (b) show the actual CIRs for antenna 1 and 2; parts (c) and (d) show separate a-BLUE estimates for antenna 1
and 2 respectively where we utilized Equation (52); parts (e) and (f) show the full a-BLUE CIR estimates given by Equation (49) where
both the channel estimates are obtained jointly; parts (g) and (h) show the correlation based estimates as given by Equation (36); and
parts (i) and (j) show the least squares based estimates as given by Equation (37). For part (c-f) the assumed SNR level for each diversity
channel is 19dB.

4.1. Robustness of the a-BLUE Algorithm to Timing and Carrier Offsets

The robustness of the a-BLUE CIR estimator to (clock) timing offset and carrier phase offset has also been studied for
the single antenna receiver. Theassumedchannel impulse response shown in Equation (45) consists of perfectly sampled
composite pulse shape appearing in the middle of the CIR vector. One may want to investigate the effect of having a
receiver timing offset and/or the carrier phase offset on the a-BLUE algorithm.

For timing offset simulations the CIR’s are created as

h̃to = [0, · · · , 0︸ ︷︷ ︸
Na−Nq

, p[−Nq+εto], · · · , p[−1+εto], p[εto], p[1+εto], · · · , p[Nq+εto], 0, · · · , 0︸ ︷︷ ︸
Nc−Nq

]T (55)



whereεto ∈ (−T
2 , T

2 ] is the timing offset. Then for the channel of (55) with a fixedεto ∈ (−T
2 , T

2 ], we estimated the CIR
using Equation (49), and calculated the least squares estimation errorENLS between the actual CIR and the estimated CIR.

Similarly, for carrier phase offset simulations the CIR’s are created as

h̃co = εco[0, · · · , 0︸ ︷︷ ︸
Na−Nq

, p[−Nq], · · · , p[−1], p[0], p[1], · · · , p[Nq], 0, · · · , 0︸ ︷︷ ︸
Nc−Nq

]T (56)

whereεco = exp(−j2πθ) is the unit complex vector that rotates the original CIR with respect to the offset angleθ ∈
(−π, π]. Then for the channel of (56) with a fixedεco, we estimated the CIR using Equation (49), and calculated the least
squares estimation errorENLS between the actual CIR and the estimated CIR.

The results obtained by varying the timing offsetεto, and the carrier offsetεco are provided in Figure 3 parts (a) and (b)
respectively. As can be seen in Figure 3 parts (a) there is a slight degradation in the resulting CIR estimate due to timing
offset which is normally expected; however a-BLUE algorithm is insensitive to carrier phase offset. Both figures show the
robustness of the a-BLUE algorithm to timing and carrier phase offsets.
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Figure 3. Simulation results showing the robustness of the a-BLUE algorithm to (a) timing offset, and (b) carrier recovery phase offset.

5. CONCLUSION

This paper demonstrates the BLUE and a-BLUE CIR estimation algorithms for channels with long delay spreads, where
the number of training symbols can be insufficient to support the length of the channel. In particular we show that a-BLUE
initial channel estimation algorithm outperforms the standard least squares and correlation based initial channel estimation
algorithms achieving the same computational complexity. This feature makes the a-BLUE algorithm an attractive choice
for receivers employing channel estimate based (indirect) equalizers,6 or for receivers with direct adaptive equalizers
where a quick and reliable channel information is needed for equalizer tap weight initialization.

We also demonstrated the robustness of the a-BLUE algorithm to timing and carrier offsets when there is no multipath
present.
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