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Abstract— We provide an iterative channel impulse response
(CIR) estimation algorithm for communication systems which
utilize a periodically transmitted training sequence within a con-
tinuous stream of information symbols. This iterative procedure
calculates the (semi-blind)Best Linear Unbiased Estimate(BLUE)
of the CIR. We first provide a formulation of the received
data and correlation processing with the adjacent information
symbol correlation taken into account, and we then present the
connections of the correlation based CIR estimation scheme to
the ordinary least squares CIR estimation. Simulation results are
provided to demonstrate the performance of the novel algorithm.

I. I NTRODUCTION

For communications systems utilizing a periodically trans-
mitted training sequence,least-squares(LS) based channel
estimation orcorrelation based channel estimation algorithms
have been the two most widely used alternatives [1]. Both
methods use a stored copy of the known transmitted training
sequence at the receiver. The properties and the length of
the training sequence are generally different depending on
the particular communication system’s standard specifications.
However most channel estimation schemes do not account for
the baseline noiseterm which occurs due to the correlation
of the stored copy of the training sequence with the unknown
symbols adjacent to transmitted training sequence, as well as
the additive channel noise [1], [8]. In the sequel, although
the examples following the derivations of the BLUE channel
estimator will be drawn from the ATSC digital TV 8-VSB
system [2], to the best of our knowledge it could be applied
with minor modifications to any digital communication system
with linear modulation which employs a periodically transmit-
ted training sequence. The novel algorithm presented in the
sequel is targeted for the systems that are desired to work
with channels having long delay spreadsLd; in particular
we consider the case where(NT + 1)/2 < Ld < NT ,
whereNT is the duration of the available training sequence.

For instance the 8-VSB digital TV system has 728 training
symbols, whereas the delay spreads of the terrestrial channels
have been observed to be at least 400-500 symbols long [5],
[6].

II. BASEBAND DATA TRANSMISSIONMODEL

The baseband symbol rate sampled receiver pulse-matched
filter output is given by

y[n] ≡ y(t)|t=nT =
∑

k

Ikh[n− k] + ν[n], (1)

=
∑

k

Ikh[n− k] +
∑

k

η[k]q∗[−n + k] (2)

where

Ik =
{

ak, 0 ≤ k ≤ N − 1
dk, N ≤ n ≤ N ′−1,

}
∈A≡{α1,· · · , αM} (3)

is the M -ary complex valued transmitted sequence,A ⊂C1,
and{ak} ∈ C1 denote the firstN symbols within aframeof
lengthN ′ to indicate that they are the known training symbols;
{dk} ∈ C1 denote the remainingN ′ −N random data within
a frame;ν(t) = η(t) ∗ q∗(−t) denotes the complex (colored)
noise process after the receiver (pulse) matched filter, withη(t)
being a zero-mean white Gaussian noise process with spectral
densityσ2

η per real and imaginary part;h(t) is the complex
valued impulse response of the composite channel, including
pulse shaping transmit filterq(t), the physical channel impulse
responsec(t), and the receive filterq∗(−t), and is given by

h(t) = p(t) ∗ c(t) =
L∑

k=−K

ckp(t− τk), (4)

andp(t) = q(t)∗q∗(−t) is the convolution of the transmit and
receive filters whereq(t) has a finite support of[−Tq/2, Tq/2],
and the span of the transmit and receive filters,Tq, is integer



multiple of the symbol period,T ; that is Tq = NqT = 2Lq,
Nq = 2Lq ∈ Z+. {ck} ⊂C1 denote complex valued physical
channel gains, and{τk} denote the multipath delays, or the
Time-Of-Arrivals (TOA). It is assumed that the time-variations
of the channel are slow enough thatc(t) can be assumed to
be a static inter-symbol interference (ISI) channel, at least
throughout the training period. We also note that for 8-VSB
system [2] the transmitter pulse shape is the Hermitian sym-
metric root-raised cosine pulse, which impliesq(t) = q∗(−t).
In the sequelq[n] ≡ q(t)|t=nT will be used to denote both the
transmit and receive filters. In the sequel the sampled matched
filter output signaly[n] will be used extensively in vector form,
and to help minimize introducing new variables, the notation
of y[n1:n2] with n2 ≥ n1, will be adopted to indicate the
column vectory[n1:n2] = [y[n1], y[n1 +1], · · · , y[n2]]T . Same
notation will also be applied to the noise variablesη[n] and
ν[n].

Without loss of generality, symbol rate sampled, complex
valued, composite CIRh[n] can be written as a finite dimen-
sional vector

h = [h[−Na], · · · , h[−1], h[0], h[1], · · · , h[Nc]]T (5)

whereNa and Nc denote the number of anti-causal and the
causal taps of the channel, respectively, and are given by

Na = round

{
τ−K − TNq

T

}
, andNc = round

{
τL + TNq

T

}
,

andLd = (Na + Nc + 1)T is the delay spread of the channel
(including the pulse tails), or equivalentlyNa + Nc + 1 is
the total memory of the channel. Based on Equation (2) and
assuming thatN ≥ Na + Nc + 1, we can write the pulse
matched filter output correspondingonly to the known training
symbols compactly as

y[Nc:N−Na−1] = Ãh + ν [Nc:N−Na−1] (6)

= Ãh + Q̃η[Nc−Lq:N−1−Na+Lq], (7)

where

Ã = T {
[aNc+Na , · · ·, aN−1]T , [aNc+Na , · · ·, a0]

}
(8)

=




aNc+Na aNc+Na−1 · · · a0

aNc+Na+1 aNc+Na · · · a1

...
...

. . .
...

aN−1 aN−2 · · · aN−1−Na−Nc


 ,

where Ã is (N − Na − Nc) × (Na + Nc + 1) Toeplitz
convolution matrix with first column[aNc+Na , · · · , aN−1]T

and first row [aNc+Na , · · · , a0], and ν [Nc:N−Na] =
Q̃η[Nc−Lq:N−1−Na+Lq ] is the colored noise at the receiver
matched filter output, with

Q̃ =




qT 0 · · · 0
0 qT · · · 0
...

...
. . .

...
0 0 · · · qT




(N−Na−Nc)×(N−Na−Nc+Nq)

(9)

q = [q[+Lq], · · · , q[0], · · · , q[−Lq]]T , (10)

where q denotes the symbol rate sampled receiver pulse
matched filter.

Similarly the pulse matched filter output which includes
all the contributions from the known training symbols (which
includes adjacent random data as well) can be written as

y[−Na:N+Nc−1] = (A + D)h + ν [−Na:N+Nc−1] (11)

= Ah+Dh+Qη[−Na−Lq :N+Nc−1+Lq ], (12)

where

A = T





[a0, · · · , aN−1, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]T , [a0, 0, · · · , 0︸ ︷︷ ︸
Na+Nc

]





(13)

is a (N + Na + Nc) × (Na + Nc + 1) Toeplitz matrix
with first column[a0, a1, · · · , aN−1, 0, · · · , 0]T , and first row
[a0, 0, · · · , 0], and

D = T


[0, · · · , 0︸ ︷︷ ︸

N

, dN , · · · , dNc+Na+N−1]T , (14)

[0, d−1, · · · , d−Nc−Na︸ ︷︷ ︸
data from previous frame

]





, (15)

is a Toeplitz matrix which includes adjacent random informa-
tion symbols only, prior to and after the training sequence. The
data sequence[d−1, · · · , d−Nc−Na ] is the unknown information
symbols transmitted at the end of the frame prior to the
current frame being transmitted.Q is of dimension(N +Na+
Nc) × (N + Na + Nc + Nq) and has the same convolution
matrix structure withQ̃ as displayed in Equation (9). We
now write the contributions of the unknown symbolsDh in
Equation (12) in a different format which will prove to be
more useful in the subsequent derivations.

We first defined = Sd̃, or equivalentlyd̃ = ST d, where

d̃ = [d−Nc−Na , · · ·, d−1,01×N , dN , · · ·, dN+Nc+Na−1]T (16)

d = [d−N−Na , · · · , d−1, dN , · · · , dN+Nc+Na−1]T (17)

S =
[

INa+Nc 0(Na+Nc)×N 0(Na+Nc)

0(Na+Nc) 0(Na+Nc)×N INa+Nc

]
(18)

where S is (2(Nc +Na)) × (N +2(Na +Nc)) dimensional
selectionmatrix which retains the random data, eliminates the
N zeros in the middle of the vector̃d. We also introduce

H =




h̄
T 0 · · · 0
0 h̄

T · · · 0
...

...
. . .

...

0 0 · · · h̄
T




(N+Nc+Na)×(N+2(Na+Nc))

(19)

h̄ = Jh (20)

J =




0 · · · 0 1
0 · · · 1 0
...

...
...

1 0 · · · 0




(Na+Nc+1)×(Na+Nc+1)

(21)

H = HST (22)



where h̄ is the time reversed version ofh (re-ordering is
accomplished by the permutation matrixJ ), and H is of
dimension(N + Na + Nc) × (2(Nc + Na)) with a “hole”
inside which is created by the selection matrixS as defined
in Equation (18). Then it is trivial to show that

Dh = Hd̃ = HST d = Hd. (23)

Based on the Equations (16-23) we can rewrite Equation (12)
as

y[−Na:N+Nc−1] = Ah+Hd+Qη[−Na−Lq :N+Nc−1+Lq ]. (24)

III. OVERVIEW OF GENERALIZED LEAST SQUARES

Consider the linear model

y = Ax + ν (25)

where y is the observation (or response) vector,A is the
regression (or design) matrix,x is the vector of unknown
parameters to be estimated, andν is the observation noise
(or measurement error) vector. Assuming that it is known that
the random noise vectorν is zero mean, and is correlated,
that is Cov{ν} = Kν ≡ 1

2E{ννH} 6= σ2
νI, we define the

(generalized) objective function for the model of (25) by

JGLS(x) = (y −Ax)HK−1
ν (y −Ax). (26)

The least squares estimate that minimizes Equation (26) is

x̂gls = (AHK−1
ν A)−1AHK−1

ν y, (27)

The generalized least squares estimatex̂gls given by Equa-
tion (27) is called thebest linear unbiased estimate(BLUE) [7]
among alllinear unbiased estimators if the noise covariance
matrix isknownto be Cov{ν} = Kν . If the noiseν is known
to be Gaussianwith zero mean and with covariance matrix
Kν , that is if it is known thatν ∼ N (0,Kν), then the
estimator of (27) is called theminimum variance unbiased
estimator(MVUE) among all unbiased estimators (not only
linear).

IV. OVERVIEW OF THE PROPOSEDCIR ESTIMATOR

For comparison purposes we first provide the well known
correlation and ordinary least squares based estimators, where
correlations based estimation is denotedĥu (the subscriptu
stands for theuncleanedCIR estimate). Cross correlating the
stored training sequence with the received sequence, which is
readily available in digital receivers for the primary purpose
of frame synchronization[3], yields a raw channel estimate

h̃u[n] =
1

ra[0]

N−1∑

k=0

a∗ky[k + n], n =−Na, · · ·, 0, · · ·,Nc (28)

wherera[0] =
N−1∑
k=0

‖ak‖2. Equivalently Equation (28) can be

written as

ĥu =
1

ra[0]
AHy[−Na:N+Nc−1]. (29)

Substituting Equation (24) into (29) we get

ĥu =
1

ra[0]
AH

(
Ah+Hd+Qη[−Na−Lq:N+Nc−1+Lq ]

)
. (30)

In order to get rid of the sidelobes of the aperiodic autocor-
relation we can simply invert the normalized autocorrelation
matrix Raa of the training symbols, defined by

Raa =
1

ra[0]
AHA. (31)

Then thecleanedchannel estimatêhc (the subscriptc stands
for the cleanedCIR estimate) is obtained from

ĥc = R−1
aa ĥu (32)

= (AHA)−1AHy[−Na:N+Nc−1]. (33)

Substituting Equation (30) into (32) we get

ĥc = h+
(
AHA

)−1

AH
(
Hd+Qη[−Na−Lq:N+Nc−1+Lq ]

)

︸ ︷︷ ︸
base-line noise

. (34)

As can be seen from Equation (34) the channel estimate
ĥc has the contributions due to unknown symbols prior to
and after the training sequence, which are elements of the
vectord, as well as the additive channel noise; only the side-
lobes due to aperiodic auto-correlation is removed. The term(
AHA

)−1

AH
(
Hd + Qη[−Na−Lq :N+Nc−1+Lq]

)
is called

baseline noisein the channel estimate [3]. Also note that the
channel estimate of Equation (33) can be recognized as the
(ordinary) least-squares estimate[1].

We can denote the two terms on the right side of Equa-
tion (24) byv = Hd + Qη[−Na−Lq :N+Nc−1+Lq ]. Hence we
rewrite (24) as

y[−Na:N+Nc−1] = Ah + v. (35)

By noting the statistical independence of the random vectors
d andη, and also noting that both vectors are zero mean, the
covariance matrix,Kv of v is given by

Cov{v} = Kv ≡ 1
2
E{vvH} =

Ed

2
HHH + σ2

ηQQH , (36)

where Ed is the energy of the transmitted information
symbols, and equals to21 if the symbols {dk} are cho-
sen from the set{±1,±3,±5,±7}. Realizing that the
model of (35) can be seen as the general linear model
of Equation (25), and using the same arguments summa-
rized in Section III the generalized least squares objec-
tive function to be minimized is written asJGLS(h) =(
y[−Na:N+Nc−1]−Ah

)H

K−1
v

(
y[−Na:N+Nc−1]−Ah

)
. Then the

generalized least-squares solution to the model of Equa-
tion (35) which minimizes the objective functionJGLS(h)
is given by

ĥK = (AHK−1
v A)−1AHK−1

v y[−Na:N+Nc−1]. (37)

The problem with Equation (37) is that the channel estimate
ĥK is based on the covariance matrixKv, which is a function



of the true channel impulse response vectorh as well as the
channel noise varianceσ2

η. In actual applications the BLUE
channel estimate of Equation (37) can not be exactly obtained.
Hence we need aniterative technique to calculate generalized
least squares estimate of (37) where every iteration produces
an updated estimate of the covariance matrix as well as the
noise variance. Due to space limitations without going into
the details, a simplified version of the iterations, which yield
a closer approximation to the exact BLUE CIR estimate after
each step, is provided in Algorithm 1. In the algorithm noise
variance for each stepk = 0, 1, . . . , Niter is estimated by

σ̂2
η[k]=

1
2Eq(N−Na−Nc)

‖ŷ[k][Nc:N−Na]−y[Nc:N−Na]‖2, (38)

whereEq = ‖q‖2 and ŷ[k][Nc:N−Na] = Ãĥ
(th)

[k], whereÃ
is given in (8).

Due to space limitations we can not provide the details of
the thresholdingsteps ([2], [4-c]) of the algorithm. A fixed
predetermined threshold can be used at the initial thresholding
step and this initial threshold could be refined as the CIR
estimate gets better after each iteration. In addition other
heuristic or statistical thresholding techniques may also be
utilized to detect the presence of the non-zero channel taps
within baseline noise, which is shown for the case of the ordi-
nary LS-CIR estimation in (34). For further details regarding
thresholding techniques readers are referred to [4].

Algorithm 1 Iterative Algorithm to obtain a CIR estimate via
Generalized Least-Squares

[1] Get an initial CIR estimatêh[0] (use either (29) or (33));

[2] Threshold the initial CIR estimate, and denote itĥ
(th)

[0];
[3] Estimate the noise variancêσ2

η[0];
[4]
for k = 1, . . . , Niter do

[4-a] Compute the inverse of the (es-
timated) covariance matrix K̂

−1

v [k] =[
Ed
2

H(ĥ
(th)

[k−1])HH(ĥ
(th)

[k−1])+σ̂2
η[k−1]QQH

]−1

;

[4-b] ĥK [k] = (AHK̂
−1

v [k]A)−1AHK̂
−1

v [k]y[−Na:N+Nc−1];

[4-c] Threshold the CIR estimatêhK [k], and denote it̂h
(th)

[k];
[4-d] Estimate the noise variancêσ2

η[k].
end for

A. Complexity of the Algorithm

The complexity estimate for a single iteration of the algo-
rithm is given by the following:
Step[4-a]:

1) To compute H(ĥ
(th)

[k − 1])HH(ĥ
(th)

[k − 1]) takes
2(Na + Nc)(N + Na + Nc)2 multiplications

2) To computeQQH takes(N +Na+Nc+Nq)(N +Nq +
Nc)2 multiplications

3) To computeK̂
−1

v takes(N +Na +Nc)3 multiplications
Step[4-b]:

1) To computeAHK̂
−1

v [k]A takes(Na+Nc+1)(N+Na+
Nc)2 + (Na + Nc + 1)2(N + Na + Nc) multiplications

TABLE I

SIMULATED CHANNEL DELAYS IN SYMBOL PERIODS AND RELATIVE

GAINS (K = 2 pre-cursorGHOSTS, L = 6 post-cursorGHOSTS)

Channel taps Delay {τk} Gain {|ck|}
k = −2 -60.277 0.55
k = −1 -0.957 0.7263

Main k = 0 0 1
k = 1 3.551 0.6457
k = 2 15.250 0.9848
k = 3 24.032 0.7456
k = 4 29.165 0.8616
k = 5 221.2345 0.6150
k = 6 332.9810 0.4900

2) To compute(AHK̂
−1

v [k]A)−1 takes(Na + Nc + 1)3

multiplications

3) To computeK̂
−1

v [k]y[−Na:N+Nc−1] takes(N + Na +
Nc)2 multiplications

4) To computeAH(K̂
−1

v [k]y[−Na:N+Nc−1]) takes(Na +
Nc + 1)(N + Na + Nc) multiplications

5) To computêhK [k] takes(Na+Nc+1)2 multiplications.
We note that the multiplication count ofO(N3) to invert an
N × N matrix which we have included in our complexity
estimate is the worst case scenario. Asymptotically, the com-
plexity estimate is dominated by this term (i.e., the asymptotic
complexity of the algorithm isO((N +Na+Nc)3)) and this is
the worst case scenario without taking any special structures
of the matrices into account. We are presently working on
versions the algorithm which are more economical in terms of
the complexity, specifically versions of the algorithm where
matrix inversions are not explicitly computed.

V. SIMULATIONS

We considered an 8-VSB [2] receiver with a single antenna.
8-VSB system has a complex raised cosine pulse shape with
roll-off factor β = 0.115 [2]. The CIR we considered is
given in Table I. The phase angles of individual paths for
all the channels are taken to bearg{ck} = exp(−j2πfcτk),
for k = −2, · · · , 6 wherefc = 50

Tsym
and Tsym = 92.9nsec.

According to the tap delays given in Table I and having
Nq = 60, the delay spread including the pulse tails isLd ≈
(60 + 333 + 2Nq)T = 513T ≈ 50µsec. The simulations
were run at 28dB Signal-to-Noise-Ratio (SNR) measured at
the input to the receive pulse matched filter, and it is calculated
by

SNR =
Ed ‖{c(t) ∗ q(t)}t=kT ‖2

σ2
η

. (39)

Figure 1-5 shows the simulation results for the test channel
provided in Table I. Figure 1 shows the real part of the actual
CIR. Figure 2 shows the correlation based CIR estimateĥu,
of Equation (29). Figure 3 shows the LS based CIR estimate
ĥc, of Equation (33). Figure 4 show the BLUE based CIR
estimate,̂hK [1], after the first iteration only. Figure 5 where
we assumed that the covariance matrixKv is known, provides
a bound for the BLUE iterations. Note that, since knowing the



true covariance matrixKv implies that the channel convolu-
tion matrix and the noise power are also known, the result
of Figure 5 can only be reached asymptotically in practice,
and hence serves as a bound for the BLUE iterations. We
note superior performance of the BLUE algorithm even after
the first iteration, as compared to the correlation based and
ordinary least squares based CIR estimation schemes. The
performance measure is the normalized least-squares error
which is defined byENLS = ‖h−ĥ‖2

Na+Nc+1 .
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Fig. 1. The real part of the actual CIR where the time delays and gains are
given in Table I.
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Fig. 2. The correlation based CIR estimateĥu of Equation (29).
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