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Abstract—We provide an iterative channel impulse response For instance the 8-VSB digital TV system has 728 training
(CIR) estimation algorithm for communication systems which symbols, whereas the delay spreads of the terrestrial channels

utilize a periodically transmitted training sequence within a con- have been observed to be at least 400-500 symbols long [5]
tinuous stream of information symbols. This iterative procedure '

calculates the (semi-blind)Best Linear Unbiased EstimatéBLUE) [6]-
of the CIR. We first provide a formulation of the received

data and correlation processing with the adjacent information Il. BASEBAND DATA TRANSMISSIONMODEL

Symbol correlation taken into aCCOUnt, and we then pl’esent the The baseband Symbol rate sampled rece|ver pulse_matched
connections of the correlation based CIR estimation scheme to filter output is given by

the ordinary least squares CIR estimation. Simulation results are

rovided to demonstrate the performance of the novel algorithm.
P P g ylnl = y(Oli=ar = > _Ithln—K+vn], (1)
k
|. INTRODUCTION = Y Lihln—k+ Y nlklg'[-n+k (2
For communications systems utilizing a periodically trans- k k

mitted training sequencdeast-squares(LS) based channel \yhere
estimation orcorrelation based channel estimation algorithms 0<k<N—1

have been the two most widely used alternatives [1]. Bothrk—{ E‘l’“’ N<ne N7—1 }GA—{al,... can}  (3)
methods use a stored copy of the known transmitted training ks == ’

sequence at the receiver. The properties and the lengthj®the A/-ary complex valued transmitted sequengec C?,
the training sequence are generally different depending gAd {q,} e C' denote the firstV symbols within aframe of

the particular communication system’s standard specificatiofsagth N’ to indicate that they are the known training symbols;
However most channel estimation schemes do not account {92} € C! denote the remaining’’ — N random data within

the baseline noiseerm which occurs due to the correlationy frame;v(t) = #(t)  ¢*(—t) denotes the complex (colored)

of the stored copy of the training sequence with the unknowpise process after the receiver (pulse) matched filter, y(ith
symbols adjacent to transmitted training sequence, as welli@§ng a zero-mean white Gaussian noise process with spectral
the additive channel noise [1], [8] In the Sequel, althou%nsitygg per real and imaginary partz(t) is the Comp|ex

the examples following the derivations of the BLUE channgljued impulse response of the composite channel, including
estimator will be drawn from the ATSC digital TV 8-VSB pyse shaping transmit filtex(¢), the physical channel impulse

system [2], to the best of our knowledge it could be appliagsponse:(¢), and the receive filteg* (—t), and is given by
with minor modifications to any digital communication system

with linear modulation which employs a periodically transmit-
ted training sequence. The novel algorithm presented in the h(t) = p(t)*c(t) = Z exp(t — i), (4)
sequel is targeted for the systems that are desired to work h=-K

with channels having long delay spreads; in particular andp(t) = ¢(t)xq*(—t) is the convolution of the transmit and
we consider the case whel(eNT + 1)/2 < L; < NT, receive filters where(t) has a finite support df-7, /2, T, /2],
where NT is the duration of the available training sequencand the span of the transmit and receive filtdfg, is integer

L



multiple of the symbol period7’; that isT, = N,T = 2L,, where g denotes the symbol rate sampled receiver pulse
N, =2L, € Z*. {c¢;} CC! denote complex valued physicalmatched filter.

channel gains, andr;.} denote the multipath delays, or the Similarly the pulse matched filter output which includes
Time-Of-Arrivals (TOA). It is assumed that the time-variationsll the contributions from the known training symbols (which
of the channel are slow enough thdt) can be assumed toincludes adjacent random data as well) can be written as

be a static inter-symbol interference (ISI) channel, at least .
throughout the training period. We also note that for 8-VSBI-Na:N+Ne—1] = (A4 D)h+ VN NN (11)
system [2] the transmitter pulse shape is the Hermitian sym- = Ah+Dh+QNN, L, :N+N 1L, 12)
metric root-raised cosine pulse, which implig2) = ¢*(—t). where

In the sequel[n] = ¢(t)|;=,r Will be used to denote both the
transmit and receive filters. In the sequel the sampled matched

filter output signaly[»] will be used extensively in vector form, A=Tqlao, - an-1,0, ’0,]T’ [a0,0, -, 0] (3)
and to help minimize introducing new variables, the notation Na+N, Na+N,
Of Y0y With mg > ny, will be adopted to indicate theis a (N + N, + N,) x (N, + N. + 1) Toeplitz matrix
column vectoryy,, .,.,; = [y[n1], ylna +1], -+, y[n2]]". Same  with first column[ag, a1, - ,an—1,0,-- - ,0]7, and first row
notation will also be applied to the noise variablgs] and [a,0,---,0], and
vini.

[V]\/ithout loss of generality, symbol rate sampled, complex T
valued, composite CIR[n] can be written as a finite dimen- D = Tq0.,0dy, - dyawana],  (14)

sional vector N

h = [h[_Na]v"' 7h[_1]7h[0]’h[1]7"' ah[NcHT (5) [0 d_l d_N N ] (15)
i ) ) c—Nag i
data from previous frame

where N, and N. denote the number of anti-causal and the

causal taps of the channel, respectively, and are given by | ) ] o ] )
is a Toeplitz matrix which includes adjacent random informa-

N, :round{ Tk — TNy }7 and N, = round{ L+ TNy }’ tion symbols only, prior to and after the training sequence. The
T T data sequenckl, - -- ,d_n.—n,] is the unknown information

and Ly = (N, + N, + 1)T is the delay spread of the channepymbols transmltted at the end of the frame prior to the
(including the pulse tails), or equivalentlyy, + N, + 1 is current frame being transmitte@ is of dimension(N + N, +

the total memory of the channel. Based on Equation (2) aAtt) * (N + Na + N + Ng) and has the same convolution
assuming thatV > N, + N. + 1, we can write the pulse matrix structure withQ as displayed in Equation (9). We
matched filter output correspondingly to the known training NOW write the contributions of the unknown symbdl#h in

symbols compactly as Equation (12) in a different format which will prove to be
- more useful in the subsequent derivations.
YNN-N,—1] = AR +VINN-N,-] (6)  we first defined = Sd, or equivalentlyd = S”d, where
= Ah+Quy. 1 v-Narn) () g = (NN, d1,01xn, AN, dnynn,-1] T (16)
where d = [d-n-n,, d-1,dn,- dyingn, 1) (17)
A = T{lanan,, - ana]T lanane, - Hal} @) § = In,en. Ony+noxN O+, (18)
O, 4N OaiNgxN  IN.4N.
ANAN,  ONAN~1 - ao . . :
ANAN4L  ONAN, ay where S is (2(N.+ N,)) x (N+2(N,+ N,)) dimensional

= . . . . , selectionmatrix which retains the random data, eliminates the
: : E : N zeros in the middle of the vectat. We also introduce

aN—1 AN-2 ***  GN—-1-N,—N, r ’—lT 0 L 0
where A is (N — N, — N,) x (N, + N, + 1) Toeplitz o R ... 0
convolution matrix with first columriay ., ,ay_1]7 H = . , (19)
and first row [an.4n,, - ,a0), and vin.n_n,] = ' - _:T
QNN —1,:N-1-N,+1,) 1S the colored noise at the receiver L0 0 A ] NN x (N2(NaNL))
matched filter output, with h = Jh (20)
@ 0 0 [0 0 1
~ 0 g7 0 0 1 0
Q = : 9 J = (21)
T
0 0 T J (N-No~N) X (N-No=NeAN,) L1 0 00 ) x (V)

qa = [al+Lg),--ql0],---  al-Lg]]", (100 H = HS’ (22)



where h is the time reversed version d (re-ordering is Substituting Equation (24) into (29) we get
accomplished by the permutation matrik), and H is of R 1

dimension(N + N, + N.) x (2(N.+N,)) with a “hole”  h, = ral0]
inside which is created by the selection matfxas defined “

AH(Ah+Hd+Q77[—NG—Lq:N+Nc—1+Lq]> . (30)

in Equation (18). Then it is trivial to show that In order to get rid of the sidelobes of the aperiodic autocor-
~ . relation we can simply invert the normalized autocorrelation
Dh =Hd ="HS" d = Hd. (23)  matrix R,, of the training symbols, defined by
Based on the Equations (16-23) we can rewrite Equation (12) R _ 1 A A (31)
as o 74[0] '
YN, neN—1) = Ah+HA+ QN y, 1 NeN—141,)- (24) Then thecleanedchanljel estimatéc (the subscript. stands
for the cleanedCIR estimate) is obtained from
I11. OVERVIEW OF GENERALIZED LEAST SQUARES . "
. . h., = oo P 32
Consider the linear model R‘l}l{ L H (32)
= (A"A) A Y[-N.:N+N.—1] (33)

y = Ax+v (25) _ . :
Substituting Equation (30) into (32) we get

where y is the observation (or response) vectet, is the 1
regression (or design) matrix; is the vector of unknown h. = h+(AHA) A (Hd+Q77[—Na—Lq:N+NC—1+Lq])' (34)
parameters to be estimated, andis the observation noise

(or measurement error) vector. Assuming that it is known that

the random noise vectar is zero mean, and is correlatedAs can be seen from Equation (34) the channel estimate

that is Cofv} = K, = 1E{vvf} # o021, we define the h. has the contributions due to unknown symbols prior to

(generalized) objective function for the model of (25) by ~and after the training sequence, which are elements of the
vectord, as well as the additive channel noise; only the side-

Jors(®) = (y—Az)"K,'(y— Az). (26) lobes due to aperiodic auto-correlation is removed. The term

base-line noise

-1

The least squares estimate that minimizes Equation (26) is(AHA) A (Hd+ Qn[fNaqu:NJrNc*lJqu]) is called
A ool Al AH o1 baseline noisan the channel estimate [3]. Also note that the
2us = (ATK, A A"K, 'y, (27) " channel estimate of Equation (33) can be recognized as the

; ; ; (ordinary) least-squares estimate[1].
The generalized least squares estimae, given by Equa- . .
tion (27) is called théest linear unbiagemg estimaBLUE) [7] . Ve can denote the two terms on the right side of Equa-
among alllinear unbiased estimators if the noise covariance®? (24) byv =Hd + Qni_y, 1N ¢N.-141,)- HENCE We
matrix isknownto be Co{r} = K, . If the noisev is known rewrite (24) as
to be Gaussianwith zero mean and with covariance matrix Y naniN.1] = Ah+wv. (35)
K,, that is if it is known thatv ~ A(0,K,), then the °
estimator of (27) is called theninimum variance unbiased BY noting the statistical independence of the random vectors
estimator (MVUE) amongall unbiased estimators (not onlyd andn, and also noting that both vectors are zero mean, the

linear). covariance matrixk, of v is given by
1 &
IV. OVERVIEW OF THE PROPOSEDCIR ESTIMATOR Coviv} = K, = 5E{va} = ?dHHH +02QQ", (36)

For comparison purposes we first provide the well knoWjpere ¢, is the energy of the transmitted information

correlation and ordinary least squares based estimators, Whﬁfﬁbols and equals tal if the symbols{d;} are cho-
correlations based estimation is denofed (the subscript, sen from the set{+1,+3,+5, +7}. Realizing that the

stands for theuincleanedCIR estimate). Cross correlating theggel of (35) can be seen as the general linear model
stored training sequence with the received sequence, Whic'?)fSEquation (25), and using the same arguments summa-
readily available in digital receivers for the primary purposg,eq in Section Il the generalized least squares objec-
of frame synchronizatiofg], yields a raw channel estimate e function to be minimized is written asrs(h) =

N-1

- 1 .
hy[n] = mkzzoaky[k +n],n==Ng,---,0,-- N, (28)

H
y[_Na:NWC_l]—Ah) K (y[—Na:N+Nc—1]_ Ah). Then the
generalized least-squares solution to the model of Equa-
tion (35) which minimizes the objective functiofizrs(h)
is given by

N-1
wherer,[0] = > |lax||?. Equivalently Equation (28) can be A
=0 hie = (A"KJTA)TATK Sy v, (37)

written as

3 1 Al 29 The problem with Equation (37) is that the channel estimate
YT 0] Y[-Na:N+Ne—1): (29) hx is based on the covariance mat#&,, which is a function




TABLE |
SIMULATED CHANNEL DELAYS IN SYMBOL PERIODS AND RELATIVE
GAINS (K = 2 pre-CursorGHOSTS L = 6 poSt-CUrsorGHOSTY

of the true channel impulse response vedioas well as the
channel noise variance?,. In actual applications the BLUE
channel estimate of Equation (37) can not be exactly obtained.
Hence we need atterative technique to calculate generalized

Channel taps | Delay {r} | Gain {|cx|}

least squares estimate of (37) where every iteration produces j— 50277 055
an updated estimate of the covariance matrix as well as the k=—1 -0.957 0.7263
noise variance. Due to space limitations without going into Main k =0 0 1
the details, a simplified version of the iterations, which yield Zi; 1?’5525510 8'83%
a closer approximgtion_to the exact BLUE CIR est_imate a_fter =3 24032 0.7456
each step, is provided in Algorithm 1. In the algorithm noise k=1 29.165 0.8616
variance for each step= 0,1, ..., Ny, is estimated by k=5 221.2345 0.6150
) k=6 332.9810 0.4900

onlk]= EN—N,—N) 9k v NN =Y nov-ng 15 (38)
—~—1
where&, = [|q|? and gkl v, = Ah'"[k], whereA ~ 2) To compute(A”"K, [k]A)" takes (N, + Ne +1)°
is given in (8). multlpl|cat|orls;1
Due to space limitations we can not provide the details of 3) To computeK [k]y[_Na:N+Nc_1] takes (N + N, +
the thresholdingsteps [2], [4-c]) of the algorithm. A fixed N.)? multiplications
predetermined threshold can be used at the initial thresholdingy) To CompUteAH(f{\Zl[k]y[fNa:NJerfl]) takes(N, +
step and this initial threshold could be refined as the CIR N, 4 1)(N + N, 4+ N,) multiplications
estimate gets better after each iteration. In addition others) To computeh  [k] takes(N,+N.+1)2 multiplications.
heuristic or statistical thresholding techniques may also R, note that the multiplication count @(N?) to invert an
utilized to detect the presence of the non-zero channel taps.. nr matrix which we have included in our complexity
within baseline noise, which is shown for the case of the ordigsimate is the worst case scenario. Asymptotically, the com-
nary LS-CIR estimation in (34). For further details regardingexity estimate is dominated by this term (i.e., the asymptotic
thresholding techniques readers are referred to [4]. complexity of the algorithm i©)((N + N, +N,)?)) and this is
Algorithm 1 Iterative Algorithm to obtain a CIR estimate viag}etr\:\é Orr‘:’]tafr?feesSﬁﬁga;fcmﬁmc\/;agg ;Ziesr?tlejlsdoigiﬁgu(;ﬁs
Generalized Least-Squares . ) L 2
_ versions the algorithm which are more economical in terms of
[1] Get an initial CIR estimaté/[0] (use either (29) or (33));  the complexity, specifically versions of the algorithm where

[2] Threshold the initial CIR estimate, and denoté £ 1o; matrix inversions are not explicitly computed.

[3] Estimate the noise varianee [0]; V. SIMULATIONS

[4] '

for k=1,..., Niter do We considered an 8-VSB [2] receiver with a single antenna.
[4-a] ~ Compute  the  inverse  of the  (es-g.ySB system has a complex raised cosine pulse shape with
timated) covariance matrix K, [k} = roll-off factor 4 = 0.115 [2]. The CIR we considered is
[%H(ﬁ(m[k—l})HH(iz(th)[kfl])+o—%[k—1]QQH} ; given in Table |. The phase angles of individual paths for

hF _(AHTE ! —1 4 7! . all the channels are taken to beg{ci} = exp(—j27 fe7),

bl clh] = (ATIC 1RA)™ A K Y novy e for k = —2,---,6 where f. = 222 and T, = 92.9nsec.

[4-c] Threshold the CIR estimatex ], and denote i " [k);

[4-d] Estimate the noise variance[k]. According to the tap delays given in Table | and having

N, = 60, the delay spread including the pulse tailsLig ~

end for . .
(60 4+ 333 + 2N, )T = 513T ~ 50usec. The simulations
were run at 28dB Signal-to-Noise-Ratio (SNR) measured at
A. Complexity of the Algorithm the input to the receive pulse matched filter, and it is calculated
The complexity estimate for a single iteration of the algddy
rithm is given by the following: e et % a()Y sl
1) To compute H(E"™ [k — 1) HY(A"" [k —1]) takes !

Figure 1-5 shows the simulation results for the test channel
provided in Table I. Figure 1 shows the real part of the actual
CIR. Figure 2 shows the correlation based CIR estintate
—1 3 L of Equation (29). Figure 3 shows the LS based CIR estimate
3) To computeK,, takes(N + N, +N.)” multiplications  j, ¢ Equation (33). Figure 4 show the BLUE based CIR
Step[4-b]: o estimate,h x[1], after the first iteration only. Figure 5 where
1) To computeA” K, [k] A takes(N,+N.+1)(N+N,+ we assumed that the covariance mafiix, is known provides
N.)? + (N, + N.+1)?(N + N, + N..) multiplications a bound for the BLUE iterations. Note that, since knowing the

2(N, + N.)(N + N, + N.)? multiplications
2) To computeQQ* takes(N + N, + N+ N,)(N + N, +
N.)? multiplications



Ordinary LS CIR Estimatezch(A‘A)_lA'y

true covariance matrid<,, implies that the channel convolu-
tion matrix and the noise power are also known, the resuft®/
of Figure 5 can only be reached asymptotically in practice,, Normalized LS error =0.0011016
and hence serves as a bound for the BLUE iterations. We
note superior performance of the BLUE algorithm even after=2
the first iteration, as compared to the correlation based and
ordinary least squares based CIR estimation schemes. The
performance measure is the normalized least-squares errol

which is defined by s = AR

—0.4

Real part of the CIR —-100 -50 o 50 100 150 200 250 300 350 400
T T T T T T T delay in symbols (t/T)
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Fig. 3. LS based CIR estimafe. of Equation (33).
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Fig. 1. The real part of the actual CIR where the time delays and gains are

given in Table . ot ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
—100 —50 o 50 d{e?o _ 150 o ZIOCEUT)ZSO 300 350 400
ay in symbols
Correlation CIR Estimate: h =A'y/r, Fig. 4. BLUE based CIR estimate of Algorithm h,[1], after the first
o7t 4 iteration only.
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